1
|
Bowman C, Denis M, Canesi S. Recent strategy for the synthesis of indole and indoline skeletons in natural products. Chem Commun (Camb) 2025; 61:5563-5576. [PMID: 40129272 DOI: 10.1039/d5cc00655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Indole alkaloids are one of the most important classes of natural products found in nature, particularly in a wide variety of plants. These compounds have compact polycyclic systems with at least one nitrogen atom. Several of these alkaloids are bioactive and have raised hopes for the development of new drugs. Their biosynthesis involves tryptophan as an amino acid precursor, since the indole or indoline moiety is the main heterocycle of these natural products. However, in their quest to synthesize such complex architectures, chemists have developed several different strategies to produce this key heterocycle quickly and in an unnatural way. This review focuses on the recent total synthesis methods used to prepare the indole and indoline core of these important alkaloids. Novel and older methods that allow the rapid formation of this heterocycle are described as key steps in the total synthesis of these fascinating structures designed by Mother Nature.
Collapse
Affiliation(s)
- Carl Bowman
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| | - Maxime Denis
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| |
Collapse
|
2
|
Singh S, Maity MC, Pal S. Unveiling the Synthesis of Indole-Fused Eight-Membered Aza-Heterocycles via FeCl 3-Catalyzed Radical C-N Coupling and Photophysical Studies. J Org Chem 2025; 90:3166-3171. [PMID: 39998933 DOI: 10.1021/acs.joc.4c02449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A novel strategy toward construction of indole-fused eight-membered heterocyclic rings through a radical pathway has been reported. Our approach involves tandem radical cyclization via FeCl3-catalyzed cross-dehydrogenative double C-N bond formation using DDQ as an oxidant under mild condition. An EPR experiment and time course 1H NMR study confirm that the addition of DDQ triggers the formation of pyrazole N-radical, which contributes to the formation of an indole-fused eight-member framework with a good yield. The structural diversity and synthetic utility have been explored, along with photophysical properties of the synthesized compounds.
Collapse
Affiliation(s)
- Sakshi Singh
- School of Basic Sciences (Chemistry), Indian Institute of Technology Bhubaneswar, Argul, Khordha, Bhubaneswar 752050, Odisha, India
| | - Madhab C Maity
- School of Basic Sciences (Chemistry), Indian Institute of Technology Bhubaneswar, Argul, Khordha, Bhubaneswar 752050, Odisha, India
| | - Shantanu Pal
- School of Basic Sciences (Chemistry), Indian Institute of Technology Bhubaneswar, Argul, Khordha, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
3
|
Du L, Dian L, Newmister SA, Xia Y, Luo G, Sherman DH, Li S. The Mutually Inspiring Biological and Chemical Synthesis of Fungal Bicyclo[2.2.2]diazaoctane Indole Alkaloids. Chem Rev 2025; 125:1718-1804. [PMID: 39927617 PMCID: PMC11936112 DOI: 10.1021/acs.chemrev.4c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Fungal indole alkaloids bearing a bicyclo[2.2.2]diazaoctane (BCDO) core structure are a fascinating family of natural products that exhibit a wide spectrum of biological activities. These compounds also display remarkable structural diversity, with many different diastereomers and enantiomers produced by specific fungal strains. The biogenesis of the unique BCDO moiety has long been proposed to involve an intramolecular [4+2] hetero-Diels-Alder (IMDA) reaction, but the exact mechanisms for this hypothetical transformation have remained elusive until recently. This review aims to summarize the whole history of synthetic and biosynthetic studies of fungal BCDO indole alkaloids, by covering the discovery, biomimetic syntheses, total syntheses, biosynthetic pathway elucidation, and biological activities of representative compounds. We highlight the mutual inspiration and corroboration between biological and synthetic chemists in exploring the intriguing biosynthetic mysteries of this family of natural products. We also provide perspectives and clues for the remaining biosynthetic problems.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Longyang Dian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuwei Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Guanzhong Luo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Departments of Medicinal Chemistry, Chemistry and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| |
Collapse
|
4
|
Yadav J, Patel A, Dolas AJ, Iype E, Rangan K, Kumar I. Organocatalytic Asymmetric Construction of 2,6-Diazabicyclo-[2.2.2]octanes by Harnessing the Potential of an 3-Oxindolium Ion Intermediate. Angew Chem Int Ed Engl 2025; 64:e202416042. [PMID: 39404958 DOI: 10.1002/anie.202416042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/14/2024]
Abstract
Due to its structural complexity and intrinsic sensitivity of bridged aminal junction, 2,6-diazabicyclo[2.2.2]octane (2,6-DABCO) has remained a highly desirable target in synthetic chemistry. However, the asymmetric access to this unit is still insufficient and hampered by the need for meticulously created functionalities for intricate double aza-cyclizations. Herein, we have developed a novel enantio- and diastereoselective protocol to access polycyclic chiral 2,6-DABCOs under metal-free conditions. This domino process involves the amine-catalyzed [4+2] annulation between glutaraldehyde and 2-arylindol-3-ones, followed by an acid-mediated Pictet-Spengler reaction/intramolecular aza-cyclization cascade sequence with tryptamine by trapping of in situ generated 3-oxindolium ion intermediate for the first time. Overall, 2,6-DABCOs fused with medicinally relevant scaffolds were isolated with good yield and excellent stereoselectivity by constructing five new bonds and four stereocenters in a one-pot operation.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Arun Patel
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| |
Collapse
|
5
|
Dolas AJ, Yadav J, Nagare YK, Rangan K, Iype E, Kumar I. Enantioselective synthesis of α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center under metal-free conditions. Org Biomol Chem 2024; 23:98-102. [PMID: 39535059 DOI: 10.1039/d4ob01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Construction of a chiral methanamine unit at the C3 position of pyrrole is highly desirable; nevertheless, it remains challenging due to its intrinsic electronic properties. Herein, we present an operationally straightforward and direct asymmetric approach for accessing α-(3-pyrrolyl)methanamines under benign organocatalytic conditions for the first time. The one-pot transformation proceeds smoothly through an amine-catalyzed direct Mannich reaction of succinaldehyde with various endo-cyclic imines, followed by a Paal-Knorr cyclization with a primary amine. Several N-H/alkyl/Ar α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center have been synthesized with good yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
6
|
Nandy M, Das A, Niyogi S, Khatua A, Jana D, Bisai A. Total Synthesis of (+)-Brevianamides A and B. Org Lett 2024; 26:10424-10429. [PMID: 39388370 DOI: 10.1021/acs.orglett.4c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
(+)-Brevianamides A (1a) and B (1b) are distinguished by their unique bicyclo[2.2.2]diazaoctane structure and have captured the interest of synthetic chemists due to their fascinating array of biological activities. The biosynthetic proposal of these classes of alkaloids led to the discovery of a number of interesting strategies. We present a biomimetic synthesis of these alkaloids starting from naturally occurring 4-hydroxy-l-proline and L-tryptophan. Gratifyingly, we emulate an alternative biosynthetic process through a unique elimination-isomerization sequence triggered by a dual-base system to generate the key aza-diene required for the Diels-Alder reaction to craft the bicyclo[2.2.2]diazaoctane structure.
Collapse
Affiliation(s)
- Monosij Nandy
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Apurba Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Sovan Niyogi
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Arindam Khatua
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Debgopal Jana
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
| | - Alakesh Bisai
- Department of Chemical Sciences, IISER Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
7
|
Arutiunov N, Zatsepilina AM, Aksenova AA, Aksenov NA, Aksenov DA, Leontiev AV, Aksenov AV. One-Pot Synthesis of N-Fused Quinolone-4 Tetracyclic Scaffolds from 2,2-Disubstituted Indolin-3-ones. ACS OMEGA 2024; 9:45501-45517. [PMID: 39554462 PMCID: PMC11561625 DOI: 10.1021/acsomega.4c07691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
A cascade transformation of C2-quaternary indoxyls leading to an efficient assembly of complex (dihydro)indolo[1,2-a]quinolin-5-one ring systems is reported. The method involves the gram-scale preparation of 2-(2-aryl-3-oxoindolin-2-yl)-2-phenylacetonitriles which are then converted with methyl ketones to the corresponding 2-(2-oxo-2-aryl(alkyl)ethyl)-2-phenylindolin-3-ones. The latter can either be isolated with good yields (75-96%) or, in the case of o-nitroacetophenone, used in situ for further base-assisted intramolecular SNAr cyclization resulting in indoxyl-fused quinolone-4 hybrids (up to 95%).
Collapse
Affiliation(s)
- Nikolai
A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna M. Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna A. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| |
Collapse
|
8
|
Xu W, Sun TY, Di Y, Hao X, Wu YD. A comprehensive understanding of the mechanism of the biomimetic total synthesis of brevianamide A. Org Biomol Chem 2024; 22:8189-8197. [PMID: 39292510 DOI: 10.1039/d4ob00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Recently, several studies on the chemical synthesis of brevianamide A (BA) were reported. In particular, a highly efficient and remarkably selective synthetic strategy was reported by Lawrence's group. However, a unified mechanistic understanding of these results is still lacking. We have carried out a DFT study and proposed a unified mechanism to understand these experimental results. Starting from intermediate 2, the most favorable reaction sequence is a fast tautomerization, followed by a σ-migration of the base moiety, and a final inverse-electron demanding Diels-Alder reaction, resulting in the formation of the BA product stereoselectively. This reaction mechanism can also be applied to understand the biosynthesis of BA that involves enzymatic catalysis.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Chemical Oncogenomics, Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Tian-Yu Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Yu LM, Chen H, Fang W, Cai R, Tao Y, Li Y, Dong H. Recent advances in oxidative dearomatization involving C-H bonds for constructing value-added oxindoles. Org Biomol Chem 2024; 22:7074-7091. [PMID: 39157861 DOI: 10.1039/d4ob00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
Collapse
Affiliation(s)
- Le-Mao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Haojin Chen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Wenjing Fang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruonan Cai
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yi Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
10
|
Nasibullina ER, Mendogralo EY, Merkushev AA, Makarov AS, Uchuskin MG. Oxidative Transformation of 2-Furylanilines into Indolin-3-ones. J Org Chem 2024; 89:6602-6606. [PMID: 38635314 DOI: 10.1021/acs.joc.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Oxidation of 2-furylaninlies with m-CPBA followed by treatment with a base provides access to functionalized indolin-3-ones. The designed oxidative transformation utilizes an underassessed chemical behavior of furyl-containing amines to form a C-N bond via engaging a β-carbon atom of the furan core upon a ring-forming step, thereby providing an alternative disconnection toward nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton A Merkushev
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| |
Collapse
|
11
|
Ma Y, Liu QH, Han YP. Palladium-Catalyzed Enantioselective Intramolecular Heck Dearomative Annulation of Indoles with N-Tosylhydrazones. J Org Chem 2023; 88:15881-15893. [PMID: 37922202 DOI: 10.1021/acs.joc.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
An elegant Pd(dba)2-catalyzed enantioselective Heck dearomative annulation of indoles and N-tosylhydrazones for the straightforward assembly of structurally diverse optically active indoline scaffolds containing the quaternary carbon centers at the C2 position has been developed. The tandem protocol, which utilized a Pd(dba)2/BINOL-based phosphoramidite ligand as the catalytic system, proceeded smoothly through successive oxidative addition, intramolecular carbon palladation, migratory insertion, and β-elimination sequences, leading to the chiral indoline derivatives in moderate to excellent yields, with excellent enantioselectivities and diastereoselectivities. In addition, the synthetic practicability of the catalytic system was underlined by a scaled-up experiment and the late-stage derivatization of the products, thus highlighting the potential applications in synthetic chemistry, medicinal chemistry, and material science.
Collapse
Affiliation(s)
- Yue Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Qing-Hui Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
12
|
Sun Y, Dhbaibi K, Lauwick H, Lalli C, Taupier G, Molard Y, Gramage-Doria R, Dérien S, Crassous J, Achard M. Asymmetric Ruthenium Catalysis Enables Fluorophores with Point Chirality Displaying CPL Properties. Chemistry 2023; 29:e202203243. [PMID: 36367394 DOI: 10.1002/chem.202203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
A novel enantiopure π-allylruthenium(IV) precatalyst allowed the enantioselective and stereospecific allylations of indoles and gave access to indolin-3-ones, containing vicinal stereogenic centers. Facile separation of diastereoisomers exhibiting opposite circularly polarized luminescence (CPL) activities in diverse solvents, including water, demonstrated the potential of these sustainable transformations and of the newly prepared molecules.
Collapse
Affiliation(s)
- Yang Sun
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Kais Dhbaibi
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Hortense Lauwick
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Claudia Lalli
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Gregory Taupier
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Yann Molard
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | | | - Sylvie Dérien
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Jeanne Crassous
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Mathieu Achard
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| |
Collapse
|
13
|
Nagare YK, Shah IA, Yadav J, Pawar AP, Rangan K, Choudhary R, Iype E, Kumar I. Electrochemical Oxidative Addition of Nucleophiles on 2-Arylindoles: Synthesis of C2-Heteroquaternary Indolin-3-ones. J Org Chem 2022; 87:15771-15782. [DOI: 10.1021/acs.joc.2c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Imtiyaz Ahmad Shah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad 500078, Telangana, India
| | | | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
14
|
Mansour A, Gagosz F. Expedited Total Synthesis of (±)-Brevianamide A via the Strategic Use of Gold(I) Catalysis. Org Lett 2022; 24:7200-7204. [PMID: 36170661 DOI: 10.1021/acs.orglett.2c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two concise and complementary routes to the polycyclic alkaloid (±)-brevianamide A from readily available amino acid building blocks are presented. Key to the synthesis is the strategic use of a gold(I)-catalyzed cascade process that quickly assembles the characteristic pseudoindoxyl motif of the natural product along with the two adjacent quaternary centers in a single step. This sequence, which exemplifies the structural complexity that can be achieved with gold catalysis, allowed for the shortest and highest-yield synthesis of (±)-brevianamide A to date (four steps LLS, 14% overall yield).
Collapse
Affiliation(s)
- Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Xiong T, Zhou X, Jiang J. Dearomative oxyphosphorylation of indoles enables facile access to 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2022; 20:5721-5725. [PMID: 35842851 DOI: 10.1039/d2ob01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient oxidative dearomatization of indoles with H-phosphorus oxides in the presence of TEMPO oxoammonium salt has been demonstrated. Through the intramolecular oxidative dearomatization of indoles and subsequent intermolecular nucleophilic addition with phosphorus nucleophile, a variety of structurally diverse arylphosphoryl and alkylphosphoryl indolin-3-ones were obtained in good yields with a broad substrate scope and high functional-group compatibility.
Collapse
Affiliation(s)
- Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
16
|
Abstract
We report a total synthesis of the Myrioneuron alkaloid myrioneurinol enabled by the recognition of hidden symmetry within its polycyclic structure. Our approach traces myrioneurinol's complex framework back to a symmetrical diketone precursor, a double reductive amination of which forges its central piperidine unit. By employing an inexpensive chiral amine in this key desymmetrizing event, four stereocenters of the natural product including the core quaternary stereocenter are set in an absolute sense, providing the first asymmetric entry to this target. Other noteworthy strategic maneuvers include utilizing a bicyclic alkene as a latent cis-1,3-bis(hydroxymethyl) synthon and a topologically controlled alkene hydrogenation. Overall, our synthesis proceeds in 18 steps and ∼1% yield from commercial materials.
Collapse
Affiliation(s)
- Jake M Aquilina
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
17
|
Jin C, Li N, Lin E, Chen X, Wang T, Wang Y, Yang M, Liu W, Yu J, Zhang Z, Chen Y. Enzyme Immobilization in Porphyrinic Covalent Organic Frameworks for Photoenzymatic Asymmetric Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01114] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chaonan Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mingfang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
- National Institute for Advanced Materials, Nankai University, Tianjin 300071, China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Godfrey RC, Jones HE, Green NJ, Lawrence AL. Unified total synthesis of the brevianamide alkaloids enabled by chemical investigations into their biosynthesis. Chem Sci 2022; 13:1313-1322. [PMID: 35222915 PMCID: PMC8809396 DOI: 10.1039/d1sc05801k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
The bicyclo[2.2.2]diazaoctane alkaloids are a vast group of natural products which have been the focus of attention from the scientific community for several decades. This interest stems from their broad range of biological activities, their diverse biosynthetic origins, and their topologically complex structures, which combined make them enticing targets for chemical synthesis. In this article, full details of our synthetic studies into the chemical feasibility of a proposed network of biosynthetic pathways towards the brevianamide family of bicyclo[2.2.2]diazaoctane alkaloids are disclosed. Insights into issues of reactivity and selectivity in the biosynthesis of these structures have aided the development of a unified biomimetic synthetic strategy, which has resulted in the total synthesis of all known bicyclo[2.2.2]diazaoctane brevianamides and the anticipation of an as-yet-undiscovered congener.
Collapse
Affiliation(s)
- Robert C Godfrey
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Helen E Jones
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Nicholas J Green
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L Lawrence
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
19
|
Yamashiro T, Abe T, Sawada D. Synthesis of 2-monosubstituted indolin-3-ones by cine-substitution of 3-azido-2-methoxyindolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the formal cine-substitution/hydrolysis of 3-azidoindole intermediates generated from 3-azido-2-methoxyindolines (AZINs). This protocol enables the introduction of both various carboxylic acid and alcohol into indolin-3-ones at the C2-position,...
Collapse
|