1
|
Wong YP, Jung HJ, Lin S, Shammami MA, Roshandel H, Dodge HM, Chapp SM, Ruiz De Castilla LC, Wang D, Do LH, Liu C, Miller AJM, Diaconescu PL. Using Classifiers To Predict Catalyst Design for Polyketone Microstructure. J Am Chem Soc 2025; 147:3913-3918. [PMID: 39849304 PMCID: PMC11803615 DOI: 10.1021/jacs.4c11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
We applied a classifier method to predict palladium catalysts for the formation of nonalternating polyketones via the copolymerization of CO and ethylene; current examples are limited to using phosphine sulfonate and diphosphazane monoxide supporting ligands. With the reported workflow, we discovered two new classes of palladium complexes capable of achieving the synthesis of nonalternating polyketones with a lower CO content than those made by known palladium catalysts. Our results show that we doubled the number of classes of palladium compounds that can catalyze the formation of this type of polymer. We envision that this methodology can be applied to accelerate catalyst discovery when selectivity is an important outcome.
Collapse
Affiliation(s)
- Yin-Pok Wong
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hyuk-Joon Jung
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shiyun Lin
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Matthew A. Shammami
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hootan Roshandel
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Henry M. Dodge
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Scott M. Chapp
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | | | - Dunwei Wang
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Loi H. Do
- Department
of Chemistry, University of Houston, Houston, Texas 77004, United States
| | - Chong Liu
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander J. M. Miller
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Paula L. Diaconescu
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Tang J, Zhang B, Zhang M, Yang H. Interfacial Effects of Catalysis in Pickering Emulsions. J Phys Chem Lett 2024; 15:8973-8983. [PMID: 39186038 DOI: 10.1021/acs.jpclett.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Liquid-liquid or gas-liquid interfaces are ubiquitous in nature and in industrial production. Understanding the unique effects arising from the asymmetric interfaces and controlling the catalytic reactions are frontiers of physical chemistry. However, our understanding of the reactivity and selectivity at the interfaces remains scant. Pickering emulsions are emerging as a stable biphasic reaction system, which provides a new opportunity for clarifying the inherent features responsible for prominent interfacial reactivity or selectivity. This Perspective tentatively discusses the unique effects of interfacial adsorption, hydrogen bonding of water molecules, and strong electric field at the interfaces. Additionally, it highlights key insights into the fundamental mechanisms of reaction kinetic and thermodynamic alterations, molecular orientations, and the spontaneous generation of reactive species at the interfaces through representative examples. Finally, we delineate the current challenges and propose future research directions. The perspectives advanced herein may serve as valuable guidance for the design of efficient interfacial catalytic systems.
Collapse
Affiliation(s)
- Jun Tang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, Anhui, People's Republic of China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
3
|
Danchin A, Huang JD. SynBio 2.0, a new era for synthetic life: Neglected essential functions for resilience. Environ Microbiol 2023; 25:64-78. [PMID: 36045561 DOI: 10.1111/1462-2920.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Dong Huang
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|