1
|
Lauer JC, Zhang WS, Elbert SM, Rominger F, Schröder RR, Mastalerz M. Supramolecular Interpenetrated Faujasite-Like Crystals from [4+4] Imine Cages. Chemistry 2025; 31:e202404548. [PMID: 39910956 DOI: 10.1002/chem.202404548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/07/2025]
Abstract
In recent years, porous organic cages have gained in importance, inter alia, due to their ability to be processed from solution. Especially the packing of the cages in the solid state has a significant effect on the porosity. Therefore, it is important to be able to control the packing pattern either by crystallization conditions or the interaction of molecular units, defined as crystal engineering synthons. Here, tribromoarene subunits as such are incorporated into cage structures, namely a [2+3] and a [4+4] imine cage, to study the reliability of this subunit as crystal engineering synthon. Several solvatomorphs of both cages were studied by single-crystal X-ray diffraction and packing patterns thoroughly analyzed. Among those solvatomorphs an interpenetrated Faujasite-type supramolecular arrangement is found.
Collapse
Affiliation(s)
- Jochen C Lauer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Bioquant, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Zhang G, Xu N, Yang M, Wang W, Su K, Yuan D. Ultrastable Imidazole-linked Porous Organic Cages for Ammonia Capture and Detection. Angew Chem Int Ed Engl 2025; 64:e202423226. [PMID: 39777845 DOI: 10.1002/anie.202423226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Here, we report the facile synthesis of imidazole-linked porous organic cages (IPOCs) via an in situ cyclization reaction protocol. Specifically, three IPOCs with [2+4] lantern-like structures and one with a [3+6] triangular prism structure were successfully prepared through condensation reactions between tetraformyl-functionalized calix[4]arene and bis(o-phenylenediamine) monomers in a single pot. Notably, these IPOCs exhibit high porosity, with Brunauer-Emmett-Teller (BET) specific surface areas reaching up to 1162 m2 g-1. Moreover, they demonstrate excellent chemical stability in both strong acidic and alkaline solutions. Furthermore, IPOC-2 and IPOC-4 display a remarkable NH3 capturing capability, with uptakes of up to 11.5 mmol g-1 at 1 bar and 298 K, surpassing most reported porous organic materials. Additionally, IPOC-1 exhibits highly efficient fluorescent quenching sensing of aqueous NH3, with a detection limit as low as 3.35×10-6 M. These findings strongly suggest the potential for widespread use of imidazole linkages in the development of robust functional porous organic cage materials for diverse applications.
Collapse
Affiliation(s)
- Guoshi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Ning Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Cyniak JS, Kasprzak A. Grind, shine and detect: mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides. RSC Adv 2024; 14:13227-13236. [PMID: 38655472 PMCID: PMC11037028 DOI: 10.1039/d4ra02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
A mechanochemical synthesis of novel polyaromatic amide consisting of 1,3,5-triphenylbenzene and 1,1',2,2'-tetraphenylethylene skeletons has been established. The designed mechanochemical approach using readily available and low-cost equipment allowed a twofold increase in reaction yield, a 350-fold reduction in reaction time and a significant reduction in the use of harmful reactants in comparison to the solution synthesis method. The parameters of Green Chemistry were used to highlight the advantages of the developed synthesis method over the solution-based approach. The title compound was found to exhibit attractive optical properties related to the Aggregation-induced emission (AIE) behaviour. Taking the advantage of AIE-active properties of the synthesized polyaromatic amide, its application as effective and versatile molecular receptor towards detection of monovalent anions, as well as bio-relevant anions - nucleotides, has been demonstrated. The values of the binding constants were at the satisfactory level of 104, the detection limit values were low and ranged from 0.2 μM to 19.9 μM.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
4
|
van Hilst QVC, Pearcy AC, Preston D, Wright LJ, Hartinger CG, Brooks HJL, Crowley JD. A dynamic covalent approach to [Pt nL 2n] 2n+ cages. Chem Commun (Camb) 2024; 60:4302-4305. [PMID: 38530770 DOI: 10.1039/d4cc00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A dynamic covalent approach was exploited to generate a family of homometallic [PtnL2n]2n+ cage (predominantly [Pt2L4]4+ systems) architectures. The family of platinum(II) architectures were characterized using 1H nuclear magnetic resonance (NMR) and diffusion ordered spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS) and the molecular structures of two cages were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Quinn V C van Hilst
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Aston C Pearcy
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Heather J L Brooks
- Department of Pathology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Toyama K, Tanaka Y, Yoshizawa M. A Redox-Responsive Ferrocene-Based Capsule Displaying Unusual Encapsulation-Induced Charge-Transfer Interactions. Angew Chem Int Ed Engl 2023; 62:e202308331. [PMID: 37407426 DOI: 10.1002/anie.202308331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
A ferrocene-based capsule is spontaneously and quantitatively formed in water by the assembly of bent amphiphiles carrying two ferrocene units. The disassembly and assembly of the new organometallic capsule, with a well-defined and highly condensed ferrocene core, are demonstrated by chemical redox stimuli in a fully reversible fashion under ambient conditions. In contrast to previously reported multiferrocene assemblies, only the present capsule efficiently encapsulates typical organic/inorganic dyes as well as electron-accepting molecules in water. As a result, unusual host-guest charge-transfer (CT) interactions, displaying relatively wide absorption bands in the visible to near-infrared region (λ=650-1350 nm), are observed upon the encapsulation of acceptors (i.e., chloranil and TCNQ). The resultant encapsulation-induced CT interactions can be released by a redox stimulus through the disassembly of the capsule.
Collapse
Affiliation(s)
- Kazuki Toyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Exploring the Emergent Redox Chemistry of Pd(II) Nodes with Pendant Ferrocenes: From Precursors, through Building Blocks, to Self-Assemblies. INORGANICS 2023. [DOI: 10.3390/inorganics11030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Energy-relevant small molecule activations and related processes are often multi-electron in nature. Ferrocene is iconic for its well-behaved one-electron chemistry, and it is often used to impart redox activity to self-assembled architectures. When multiple ferrocenes are present as pendant groups in a single structure, they often behave as isolated sites with no separation of their redox events. Herein, we study a suite of molecules culminating in a self-assembled palladium(II) truncated tetrahedron (TT) with six pendant ferrocene moieties using the iron(III/II) couple to inform about the electronic structure and, in some cases, subsequent reactivity. Notably, although known ferrocene-containing metallacycles and cages show simple reversible redox chemistry, this TT undergoes a complex multi-step electrochemical mechanism upon oxidation. The electrochemical behavior was observed by voltammetric and spectroelectrochemical techniques and suggests that the initial Fc-centered oxidation is coupled to a subsequent change in species solubility and deposition of a film onto the working electrode, which is followed by a second separable electrochemical oxidation event. The complicated electrochemical behavior of this self-assembly reveals emergent properties resulting from organizing multiple ferrocene subunits into a discrete structure. We anticipate that such structures may provide the basis for multiple charge separation events to drive important processes related to energy capture, storage, and use, especially as the electronic communication between sites is further tuned.
Collapse
|
7
|
Tremlett WDJ, Söhnel T, Crowley JD, Wright LJ, Hartinger CG. Ferrocene-Derived Palladium(II)-Based Metallosupramolecular Structures: Synthesis, Guest Interaction, and Stimulus-Responsiveness Studies. Inorg Chem 2023; 62:3616-3628. [PMID: 36791401 DOI: 10.1021/acs.inorgchem.2c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Using ferrocene-based ligand systems, a series of heterobimetallic architectures of the general formula [PdmLn]x+ were designed with the aim of installing an opening and closing mechanism that would allow the release and binding of guest molecules. Palladium complex formation was achieved through coordination to pyridyl groups, and using 2-, 3-, and 4-pyridyl derivatives provided access to defined PdL, PdL2, and Pd2L4 structures, respectively. The supramolecular complexes were characterized using nuclear magnetic resonance (NMR) and infrared spectroscopy, mass spectrometry, and elemental analysis, and for some examples density functional theory calculations and single-crystal X-ray diffraction analysis. 1H NMR spectroscopy was used to investigate disassembly and reassembly of the metallosupramolecular structures. The former was induced by cleavage of the relatively labile Pd-Npyridyl bonds with the introduction of the competing ligands N,N'-dimethylaminopyridine (DMAP) and Cl- (using tetrabutylammonium chloride) to yield [Pd(DMAP)4]2+ and [PdCl4]2-, respectively. The process was found to be reversible for several of the heterodimetallic compounds, with the addition of H+ or Ag+ triggering complex reassembly. Guest binding studies with several architectures revealed interactions with the anionic guests p-toluenesulfonate and octyl sulfate, but not with neutral molecules. Furthermore, the release of guests was reversibly induced with Cl- ions as a stimulus.
Collapse
Affiliation(s)
- William D J Tremlett
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|