1
|
Zhang D, Snider RL, Crawley MR, Fang M, Sanchez-Lievanos KR, Ang S, Cook TR. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorg Chem 2024; 63:22532-22541. [PMID: 39531411 DOI: 10.1021/acs.inorgchem.4c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield. The free base oNC was subsequently metalated with cobalt(II) (Co-oNC), copper(II) (Cu-oNC), and nickel(II) (Ni-oNC) ions to furnish dinuclear complexes that were characterized by mix of mass spectrometry, NMR, EPR, electronic absorption spectroscopy, and for Co-oNC, single-crystal X-ray diffraction. Cofacial cobalt porphyrins are often active as catalysts for the Oxygen Reduction Reaction. Under heterogeneous conditions in water, Co-oNC was 83% selective for the electrocatalytic 4 e-/4 H+ reduction of O2 to H2O, matching homogeneous experiments which revealed consistent selectivity for H2O (88%). This oNC core offers significant advantages over prisms formed by coordination-driven self-assembly: the dipyridnium-xylene coupling can furnish over 1 g of material in a single synthesis and the tethering motif is robust, maintaining a cofacial architecture in acidic and basic solutions. We envision this approach may be generalized to other bis-bromobenzyl building blocks, providing a means to tune metal-metal separation and other structural and electronic properties.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Rachel L Snider
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Ming Fang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Karla R Sanchez-Lievanos
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Spencer Ang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
2
|
Chakraborty D, Kaur N, Sahoo J, Hickey N, De M, Mukherjee PS. Host-Guest Interactions Induced Enhancement in Oxidase-Like Activity of a Benzothiadiazole Dye Inside an Aqueous Pd 8L 4 Barrel. J Am Chem Soc 2024; 146:24901-24910. [PMID: 39197147 DOI: 10.1021/jacs.4c05899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The effect of host-guest interactions on the chemistry of encapsulated molecules is a fascinating field of research that has gained momentum in recent years. Much of the work in this field has been focused on the effect of such interactions on catalysis and photoluminescence of encapsulated dyes. However, the effect of such interactions on related photoinduced processes, such as photoregulated oxidase-mimicking activity, has not been explored much. Herein, we report a unique example of enhancement of oxidase-like activity of a benzothiadiazole dye (G1) in water through encapsulation within a M8L4 molecular barrel (1). Favorable host-guest interactions helped the encapsulated guest G1 to have better photoinduced electron transfer to molecular oxygen leading to increased production of superoxide radical anions and oxidase-like activity. Furthermore, encapsulation inside 1 also caused a change in the redox potentials of the guest (G1) which after photoinduced electron transfer produced a better oxidizing agent than free G1. These phenomena combined to enhance the oxidase-like activity of dye G1 upon encapsulation inside cage 1. The present report demonstrates a unique effect of host-guest chemistry on photoregulated processes.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Benavides PA, Gordillo MA, Thibodeaux E, Yadav A, Johnson E, Sachdeva R, Saha S. Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1234-1242. [PMID: 38108279 DOI: 10.1021/acsami.3c15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Charge-transfer (CT) interactions between co-facially aligned π-donor/acceptor (π-D/A) arrays engender unique optical and electronic properties that could benefit (supra)molecular electronics and energy technologies. Herein, we demonstrate that a tetragonal prismatic metal-organic cage (MOC18+) having two parallel π-donor tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces selectively intercalate planar π-acceptor guests, such as hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyanotriphenylene (HCTP), and napthanelediimide (NDI) derivatives, forming 1:1 πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads. The π-acidity of intercalated π-acceptors (HATHCN ≫ HCTP ≈ NDIs) dictated the nature and strength of their interactions with the ZnTCPP faces, which in turn influenced the binding affinities (Ka) and optical and electronic properties of corresponding πA@MOC18+ inclusion complexes. Owing to its strongest CT interaction with ZnTCPP faces, the most π-acidic HATHCN guest enjoyed the largest Ka (5 × 106 M-1), competitively displaced weaker π-acceptors from the MOC18+ cavity, and generated the highest electrical conductivity (2.1 × 10-6 S/m) among the πA@MOC18+ inclusion complexes. This work demonstrates a unique through-space charge transport capability of πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads, which generated tunable electrical conductivity, which is a rare but much coveted electronic property of such supramolecular assemblies that could further expand their utility in future technologies.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Monica A Gordillo
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Thibodeaux
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Ashok Yadav
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Johnson
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Chakraborty D, Ali S, Choudhury P, Hickey N, Mukherjee PS. Cavity-Shape-Dependent Divergent Chemical Reaction inside Aqueous Pd 6L 4 Cages. J Am Chem Soc 2023. [PMID: 38019887 DOI: 10.1021/jacs.3c10191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Chemical reactions inside the confined pockets of enzyme-mimicking hosts, such as cages and macrocycles, have been an emerging field of interest over the past decade. Although many such reactions are known, the use of such cages toward the divergent synthesis of nonisomeric products has not been well explored. Divergent synthesis is a technique of forming two or more distinct products from the same reagents by changing the catalyst or reaction conditions. Changing the shape of the cage can also change the nature and magnitude of the host-guest interactions. Thus, is it possible for such changes to cause differences in the reaction pathways leading to formation of nonisomeric products? Herein, we report a divergent chemical transformation of anthrone [anthracen-9(10H)-one] inside different water-soluble M6L4 cages. When anthrone was encapsulated inside a newly synthesized M6L4 octahedral cage 1, it dimerized to form dianthrone [9,9'-bianthracen-10,10'(9H,9'H)-dione]. In contrast, when the same chemical reaction was performed inside a M6L4 double-square shaped cage 2, it was oxidized to form anthraquinone [anthracene-9,10-dione]. Similar results were obtained with a different set of isomeric aqueous Pd6 cages 3a (octahedral cage) and 3b (double-square cage), indicating the dependence of the shape of cavity on the divergent synthesis. The present report demonstrates a unique example of different outcomes/results of a reaction depending on the shape of the molecular container, which was driven by the host-guest interactions and the preorganization of the substrates.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shamsad Ali
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pritam Choudhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Wang HP, Eichhöfer A, Gu ZG, Gruber N, Stadler AM. Anion-encapsulating, discrete prism and extended frusta, from trimetallated triangular macrocycles and linkers. Chem Commun (Camb) 2023; 59:13966-13969. [PMID: 37933533 DOI: 10.1039/d3cc00137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Reaction of a trinuclear triangular macrocyclic complex Pb3L(CF3SO3)6 with bidentate linkers in a ratio of 3 equiv. of linker per 2 equiv. of complex, produces a prismatic structure with 4,4'-dipyridyl, and two unprecedented, extended 3D frustum-like structures with 1,2-di(4-pyridyl)ethylene and 1,4-di(4-pyridyl)benzene. The cavities of these structures encapsulate triflate anions.
Collapse
Affiliation(s)
- Hai-Ping Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Andreas Eichhöfer
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technolgoy (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
- Karlsruhe Nano Micro Facility (KNMFi), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Nathalie Gruber
- Service de Radiocristallographie, Faculté de Chimie, 1, rue Blaise Pascal, Strasbourg, France
| | - Adrian-Mihail Stadler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technolgoy (KIT), Eggenstein-Leopoldshafen 76344, Germany
- University of Strasbourg Institute for Advanced Study (USIAS), 5 Allée du Général Rouvillois, Strasbourg 67083, France
- Institut de Science et Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS and Université de Strasbourg, 8 Allée G. Monge, Strasbourg 67000, France.
| |
Collapse
|
6
|
Li M, Shi YQ, Gan X, Su L, Liang J, Wu H, You Y, Che M, Su P, Wu T, Zhang Z, Zhang W, Yao LY, Wang P, Xie TZ. Coordination-Driven Tetragonal Prismatic Cage and the Investigation on Host-Guest Complexation. Inorg Chem 2023; 62:4393-4398. [PMID: 36892430 DOI: 10.1021/acs.inorgchem.2c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties with a long cavity. The prism host can contain bisite or monosite guests through axial coordination binding of porphyrin and aromatic π interactions of terpyridine. The ligands and prismatic complexes were characterized by electrospray ionization mass spectrometry (ESI-MS), TWIM-MS, NMR spectrometry, and single-crystal X-ray diffraction analysis. The guest encapsulation was investigated through ESI-MS, NMR spectrometry, and transient absorption spectroscopy analysis. The binding constant and stability were determined by UV-Vis spectrometry and gradient tandem MS (gMS2) techniques. Based on the prism, a selectively confined condensation reaction was also performed and detected by NMR spectrometry. This study provides a new type of porphyrin- and terpyridine-based host that could be used for the detection of pyridyl- and amine-contained molecules and confined catalysis.
Collapse
Affiliation(s)
- Miao Li
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu-Qi Shi
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinye Gan
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Longbin Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jialin Liang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huiqi Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiting You
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Meizi Che
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhang D, Crawley MR, Oldacre AN, Kyle LJ, MacMillan SN, Cook TR. Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorg Chem 2023; 62:1766-1775. [PMID: 35699516 DOI: 10.1021/acs.inorgchem.2c01109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cofacial porphyrin catalysts for the Oxygen Reduction Reaction (ORR) formed via coordination-driven self-assembly have so far been limited to designs with fourfold symmetry, where four molecular clips bridge two porphyrin sites. We have synthesized six PynPhm (Py = pyridyl, Ph = phenyl) metalloporphyrin prisms (Co2+, Zn2+) bridged by molecular clips containing two Rh3+ centers. Four of these structures are lower symmetry, with the Py3Ph and Py2Ph2 prisms containing three and two molecular clips, respectively. The Co2+ species were evaluated for their ORR activity. Cyclic and hydrodynamic voltammetry studies of heterogeneous catalyst inks in aqueous media revealed marked differences in selectivity from ∼5% (Py3Ph) to ∼37% (Py2Ph2) for the formation of H2O2. The single-crystal X-ray structure of the Zn2 Py2Ph2 prism shows an offset between the porphyrin faces. This structural feature may be responsible for the change in selectivity, consistent with previous studies of covalently tethered cofacial porphyrins that have shown that geometry is a critical determinant of two-electron/two-proton versus four-electron/four-proton pathways. Extraction of standard rate constants ks for the ORR revealed a cofacial enhancement of ∼2 orders of magnitude over mononuclear Co2+ tetrapyridyl porphyrin. Even though all the prisms described here use the same molecular clip, the resultant structures, and thus the reactivity for the ORR, differ significantly based on the number and orientation of pyridyl donor groups on the porphyrins, highlighting how coordination-driven self-assembly can be used to rapidly tune dinuclear catalysts.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Amanda N Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lea J Kyle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene-Based Deep Blue-Emissive Metallacages as Donors for Light-Harvesting Systems. Angew Chem Int Ed Engl 2022; 61:e202207289. [PMID: 35686675 DOI: 10.1002/anie.202207289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/14/2022]
Abstract
We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
9
|
Zhang Z, Ma L, Fang F, Hou Y, Lu C, Mu C, Zhang Y, Liu H, Gao K, Wang M, Zhang Z, Li X, Zhang M. Porphyrin-Based Multicomponent Metallacage: Host-Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. JACS AU 2022; 2:1479-1487. [PMID: 35783178 PMCID: PMC9241011 DOI: 10.1021/jacsau.2c00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of supramolecular hosts with effective host-guest properties is crucial for their applications. Herein, we report the preparation of a porphyrin-based metallacage, which serves as a host for a series of polycyclic aromatic hydrocarbons (PAHs). The association constant between the metallacage and coronene reaches 2.37 × 107 M-1 in acetonitrile/chloroform (ν/ν = 9/1), which is among the highest values in metallacage-based host-guest complexes. Moreover, the metallacage exhibits good singlet oxygen generation capacity, which can be further used to oxidize encapsulated anthracene derivatives into anthracene endoperoxides, leading to the release of guests. By employing 10-phenyl-9-(2-phenylethynyl)anthracene whose endoperoxide can be converted back by heating as the guest, a reversible controlled release system is constructed. This study not only gives a type of porphyrin-based metallacage that shows desired host-guest interactions with PAHs but also offers a photooxidation-responsive host-guest recognition motif, which will guide future design and applications of metallacages for stimuli-responsive materials.
Collapse
Affiliation(s)
- Zeyuan Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Lingzhi Ma
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Fang Fang
- Instrumental
Analysis Center of Shenzhen University, Shenzhen 518055, P. R. China
| | - Yali Hou
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chenjie Lu
- Key
Laboratory of Adsorption and Separation Materials and Technologies
of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chaoqun Mu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yafei Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haifei Liu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ke Gao
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zixi Zhang
- Department
of Dermatology, The First Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P.
R. China
| | - Xiaopeng Li
- College of
Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Mingming Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
10
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene‐Based Deep Blue‐Emissive Metallacages as Donors for Light‐Harvesting Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haifei Liu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Lingzhi Ma
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Hongye Yuan
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Sanliang Ling
- University of Nottingham University Park Campus: University of Nottingham Advanced Materials Research Group, Faculty of Engineering UNITED KINGDOM
| | - Heng Wang
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|