1
|
Kang M, Nam D, Ahn J, Chung YJ, Lee SW, Choi YB, Kwon CH, Cho J. A Mediator-Free Multi-Ply Biofuel Cell Using an Interfacial Assembly between Hydrophilic Enzymes and Hydrophobic Conductive Oxide Nanoparticles with Pointed Apexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304986. [PMID: 37638655 DOI: 10.1002/adma.202304986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Biofuel cells (BFCs) based on enzymatic electrodes hold great promise as power sources for biomedical devices. However, their practical use is hindered by low electron transfer efficiency and poor operational stability of enzymatic electrodes. Here, a novel mediator-free multi-ply BFC that overcomes these limitations and exhibits both substantially high-power output and long-term operational stability is presented. The approach involves the utilization of interfacial interaction-induced assembly between hydrophilic glucose oxidase (GOx) and hydrophobic conductive indium tin oxide nanoparticles (ITO NPs) with distinctive shapes, along with a multi-ply electrode system. For the preparation of the anode, GOx and oleylamine-stabilized ITO NPs with bipod/tripod type are covalently assembled onto the host fiber electrode composed of multi-walled carbon nanotubes and gold (Au) NPs. Remarkably, despite the contrasting hydrophilic and hydrophobic properties, this interfacial assembly approach allows for the formation of nanoblended GOx/ITO NP film, enabling efficient electron transfer within the anode. Additionally, the cathode is prepared by sputtering Pt onto the host electrode. Furthermore, the multi-ply fiber electrode system exhibits unprecedented high-power output (≈10.4 mW cm-2 ) and excellent operational stability (2.1 mW cm-2 , ≈49% after 60 days of continuous operation). The approach can provide a basis for the development of high-performance BFCs.
Collapse
Affiliation(s)
- Minchul Kang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghyeon Nam
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeongyeon Ahn
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Jang Chung
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Woo Lee
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Cheong Hoon Kwon
- Department of Energy Resources and Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science & Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Soft Hybrid Materials Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|
3
|
Navarro-Nateras L, Diaz-Gonzalez J, Aguas-Chantes D, Coria-Oriundo LL, Battaglini F, Ventura-Gallegos JL, Zentella-Dehesa A, Oza G, Arriaga LG, Casanova-Moreno JR. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. BIOSENSORS 2023; 13:582. [PMID: 37366947 DOI: 10.3390/bios13060582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 μA mM-1 cm-2.
Collapse
Affiliation(s)
- L Navarro-Nateras
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Diana Aguas-Chantes
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Lucy L Coria-Oriundo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| |
Collapse
|