1
|
Sun M, Cao J, Zou Y, Ju H, Lv Y. ZIF-8 composite nanofibrous membranes loaded with bFGF: a new approach for tendon adhesion prevention and repair. Biomater Sci 2025. [PMID: 40260599 DOI: 10.1039/d5bm00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
During tendon injury repair, deficiency of basic fibroblast growth factor (bFGF) is a critical factor leading to unsatisfactory repair results. This study aims to prepare bFGF-loaded zeolite imidazole framework-8 (ZIF-8) nanocrystals using a one-pot synthesis method. Subsequently, a bilayer nanofibrous membrane incorporating these drug-loaded nanocrystals was fabricated through electrospinning technology. The potential of this composite nanofibrous membrane to facilitate the continuous release of bFGF at the site of tendon injury was evaluated, with the aim of enhancing the quality of tendon repair. The efficacy of the nanofibrous membrane in promoting tendon differentiation, preventing tendon adhesion, and facilitating tendon repair was assessed through both in vitro and in vivo experiments. At the site of tendon injury, the degradation of ZIF-8 in an acidic microenvironment resulted in the release of bFGF and Zn2+, which contributed to the enhancement of tendon repair. ZIF-8 nanocrystals achieved an encapsulation efficiency of 50.13% ± 1.42%. Following a continuous release period exceeding 40 days, the cumulative in vitro release rate was determined to be 35.02% ± 4.27%. The incorporation of ZIF-8 nanocrystals into a nanofibrous membrane demonstrated the ability to effectively preserve the bioactivity of bFGF while enabling sustained release at the site of tendon injury, thereby facilitating tendon repair. The findings offer novel insights into the treatment of tendon injuries and provide significant theoretical guidance for the tendon repair process.
Collapse
Affiliation(s)
- Min Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Jinke Cao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Yang Zou
- School of Resources and Environment, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Haiyan Ju
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China.
| |
Collapse
|
2
|
Villicana C, Su N, Yang A, Tong X, Lee HP, Ayushman M, Lee J, Tai M, Kim T, Yang F. Incorporating Bone-Derived ECM into Macroporous Microribbon Scaffolds Accelerates Bone Regeneration. Adv Healthc Mater 2025; 14:e2402138. [PMID: 39891301 DOI: 10.1002/adhm.202402138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/12/2024] [Indexed: 02/03/2025]
Abstract
Tissue-derived extracellular matrix (tdECM) hydrogels serve as effective scaffolds for tissue regeneration by promoting a regenerative immune response. While most tdECM hydrogels are nanoporous and tailored for soft tissue, macroporosity is crucial for bone regeneration. Yet, there's a shortage of macroporous ECM-based hydrogels for this purpose. The study aims to address this gap by developing a co-spinning technique to integrate bone-derived ECM (bECM) into gelatin-based, macroporous microribbon (µRB) scaffolds. The effect of varying doses of bECM on scaffold properties was characterized. In vitro studies revealed 15% bECM as optimal for promoting MSC osteogenesis and macrophage (Mφ) polarization. When implanted in a mouse critical-sized cranial bone defect model, 15% bECM with tricalcium phosphate (TCP) microparticles significantly accelerated bone regeneration and vascularization, filling over 55% of the void by week 2. Increasing bECM to 25% enhanced mesenchymal stem cell (MSC) recruitment and decreased M1 Mφ polarization but reduced overall bone formation and vascularization. The findings demonstrate co-spun gelatin/bECM hydrogels as promising macroporous scaffolds for robust endogenous bone regeneration, without the need for exogenous cells or growth factors. While this study focused on bone regeneration, this platform holds the potential for incorporating various tdECM into macroporous scaffolds for diverse tissue regeneration applications.
Collapse
Affiliation(s)
- Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrew Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hung Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeehee Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michelle Tai
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tayne Kim
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Ibne Mahbub MS, Park M, Park SS, Won MJ, Lee BR, Kim HD, Lee BT. dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights. Int J Biol Macromol 2025; 305:141040. [PMID: 39978514 DOI: 10.1016/j.ijbiomac.2025.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Mi Jin Won
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | | | - Hai-Doo Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
4
|
Bashiri Z, Khosrowpour Z, Moghaddaszadeh A, Jafari D, Alizadeh S, Nasiri H, Parsaei H, Keshtkaran Z, Abdollahpour‐Alitappeh M, Bargrizaneh F, Rezaei B, Simorgh S, Gholipourmalekabadi M. Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. Eng Life Sci 2025; 25:e202400085. [PMID: 39801563 PMCID: PMC11717148 DOI: 10.1002/elsc.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Anatomy, School of MedicineIran University of Medical SciencesTehranIran
- Omid Fertility & Infertility ClinicHamedanIran
| | - Zahra Khosrowpour
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Davod Jafari
- Oncopathology Research CenterIran University of Medical SciencesTehranIran
| | | | - Hajar Nasiri
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
| | - Houman Parsaei
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and MidwiferyShiraz University of Medical SciencesShirazIran
| | | | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information SciencesShiraz Universiy of Medical SciencesShirazIran
| | - Behzad Rezaei
- Department of Surgery, School of MedicineLarestan University of Medical SciencesLarestanIran
| | - Sara Simorgh
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Huang C, Chi C, Zhao Y, Liu W, Zhang L, Shi R, Xue J. A Periosteum-Bioinspired Electrospun Janus Membrane with Antibacterial and Osteogenic Dual Function. Macromol Biosci 2024; 24:e2300501. [PMID: 38281126 DOI: 10.1002/mabi.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Indexed: 01/29/2024]
Abstract
For a guided bone regeneration membrane, it is critical to possess osteogenic capability while inhibiting infection caused by bacteria. Inspired by the bilayer structure of the native periosteum, an electrospun Janus membrane with osteogenic and antibacterial dual-function is fabricated for guided bone regeneration. Hydrophilic moxifloxacin (MXF) and hydrophobic icariin (ICA) are loaded in the nanofibers made of a mixture of polycaprolactone and gelatin at the top and bottom layers, respectively, leading to the opposing hydrophilic/hydrophobic properties of the bilayer Janus membranes. The as-obtained Janus membrane exhibits excellent physical properties (tensile strength > 6.0 MPa) and robust biocompatibility, indicating the immense potential as a suitable replacement for the native periosteum. The membrane has a superior surface morphology and outstanding degradation performance in vitro. Besides, the rapid release of MXF and the slow release of ICA can meet the different needs of drug release rates. Only ≈30% ICA is released from the as-obtained Janus membrane after 21 d while almost 80% MXF is released. Mimicking the bilayer structure of the native periosteum, the electrospun Janus membrane containing ICA and MXF exhibits excellent comprehensive properties, which provides a promising strategy for preparing multifunctional scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Chenlin Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cheng Chi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Weiwei Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, 100089, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Rezk AI, Lee J, Kim BS, Chun S. Strategically Designed Bifunctional Polydopamine Enwrapping Polycaprolactone-Hydroxyapatite-Doxorubicin Composite Nanofibers for Osteosarcoma Treatment and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669442 DOI: 10.1021/acsami.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
This study presents a new multifunctional nanofibrous drug delivery system to provide effective combination therapy with enormous potential for the treatment of osteosarcoma. We developed a composite nanofiber scaffold comprising poly(ε-caprolactone) (PCL) and hydroxyapatite (HAp)-loaded doxorubicin (DOX) coated with polydopamine (PDA) to combine cancer cell inhibition with bone tissue regeneration. DOX was conjugated with HAp and then mixed with a PCL solution to prepare a PCL/HAp-DOX (labeled PCLDH) nanofiber. Then, in situ polymerization of PDA on the PCLDH occurred to produce the PCLDH@PDA composite nanofiber. The morphology, XRD, FT-IR, wettability, photothermal characteristics, cumulative drug release, and in vitro bioactivities were evaluated. We found that the PDA coating not only enhanced the hydrophilic properties but also controlled drug release. The PCLDH@PDA composite scaffold significantly suppressed the proliferation of bone cancer cells initially and, consequently, improved the adhesion and proliferation of human mesenchymal stem cells (hMSCs). The PDA coating boosted the composite scaffold's bioactivity, as demonstrated through ALP activity, ARS assay, and biomineralization results. This strategy offers a promising dual-function scaffold to treat residual cancer and reconstruct defects after osteosarcoma surgery.
Collapse
Affiliation(s)
- Abdelrahman I Rezk
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju-si 54907, Korea
| | - Jaekwang Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Beom Su Kim
- Department of R&BD, Cellco Inc., 208, Venture Startup Center, Jeonju University, 303, Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju-si 54907, Korea
| |
Collapse
|
7
|
Qiao F, Zou Y, Bie B, Lv Y. Dual siRNA-Loaded Cell Membrane Functionalized Matrix Facilitates Bone Regeneration with Angiogenesis and Neurogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307062. [PMID: 37824284 DOI: 10.1002/smll.202307062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Vascularization and innervation play irreplaceable roles in bone regeneration and bone defect repair. However, the reconstruction of blood vessels and neural networks is often neglected in material design. This study aims to design a genetically functionalized matrix (GFM) and enable it to regulate angiogenesis and neurogenesis to accelerate the process of bone defect repair. The dual small interfering RNA (siRNA)-polyvinylimide (PEI) (siRP) complexes that locally knocked down soluble vascular endothelial growth factor receptor 1 (sFlt-1) and p75 neurotrophic factor receptor (p75NTR ) are prepared. The hybrid cell membrane (MM) loaded siRP is synthesized as siRNA@MMs to coat on polylactone (PCL) electrospun fibers for mimicking the natural bone matrix. The results indicates that siRNA@MMs could regulate the expression of vascular-related and neuro-related cytokines secreted by mesenchymal stem cells (MSCs). GFMs promote the expression of osteogenic differentiation through paracrine function in vitro. GFMs attenuates inflammation and promotes osseointegration by regulating the coupling of vascularization and innervation in vivo. This study uses the natural hybrid cell membrane to carry genetic material and assist in the vascularization and innervation function of two siRNA. The results present the significance of neuro-vascularized organoid bone and may provide a promising choice for the design of bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Binglin Bie
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
8
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
10
|
Xu X, Chen Z, Xiao L, Xu Y, Xiao N, Jin W, Chen Y, Li Y, Luo K. Nanosilicate-functionalized nanofibrous membrane facilitated periodontal regeneration potential by harnessing periodontal ligament cell-mediated osteogenesis and immunomodulation. J Nanobiotechnology 2023; 21:223. [PMID: 37443072 DOI: 10.1186/s12951-023-01982-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Although various new biomaterials have enriched the methods for periodontal regeneration, their efficacy is still controversial, and the regeneration of damaged support tissue in the periodontium remains challenging. Laponite (LAP) nanosilicate is a layered two-dimensional nanoscale, ultrathin nanomaterial with a unique structure and brilliant biocompatibility and bioactivity. This study aimed to investigate the effects of nanosilicate-incorporated PCL (PCL/LAP) nanofibrous membranes on periodontal ligament cells (PDLCs) in vitro and periodontal regeneration in vivo. A PCL/LAP nanofibrous membrane was fabricated by an electrospinning method. The characterization of PCL/LAP nanofibrous membrane were determined by scanning electron microscopy (SEM), energy dispersive spectrum of X-ray (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and tensile test. The proliferation and osteogenic differentiation of PDLCs on the PCL/LAP nanofibrous membrane were evaluated. A PDLCs and macrophage coculture system was used to explore the immunomodulatory effects of the PCL/LAP nanofibrous membrane. PCL/LAP nanofibrous membrane was implanted into rat calvarial and periodontal defects, and the regenerative potential was evaluated by microcomputed topography (micro-CT) and histological analysis. The PCL/LAP nanofibrous membrane showed good biocompatibility and bioactivity. It enhanced the proliferation and osteogenic differentiation of PDLCs. The PCL/LAP nanofibrous membrane also stimulated anti-inflammatory and pro-remodeling N2 neutrophil formation, regulated inflammatory responses and induced M2 macrophage polarization by orchestrating the immunomodulatory effects of PDLCs. The PCL/LAP nanofibrous membrane promoted rat calvarial defect repair and periodontal regeneration in vivo. LAP nanosilicate-incorporated PCL membrane is capable of mediating osteogenesis and immunomodulation of PDLCs in vitro and accelerating periodontal regeneration in vivo. It could be a promising biomaterial for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Ziqin Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Nianqi Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Weiqiu Jin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
11
|
Vurat MT, Parmaksiz M, Elçin AE, Elçin YM. Bioactive composite hydrogels as 3D mesenchymal stem cell encapsulation environment for bone tissue engineering: in vitro and in vivo studies. J Biomed Mater Res A 2023; 111:261-277. [PMID: 36239582 DOI: 10.1002/jbm.a.37457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Although decellularized bone matrix (DBM) has often been used in scaffold form for osteogenic applications, its use as a stem cell encapsulation matrix adaptable to surgical shaping procedures has been neglected. This study aimed to investigate the feasibility of utilizing solubilized DBM and nanohydroxyapatite (nHAp)-incorporated DBM hydrogels as encapsulation matrix for bone marrow-derived MSCs (BM-MSCs). First, DBM and DBM/nHAp hydrogels were assessed by physical, chemical, turbidimetric, thermal, and mechanical methods; then, in vitro cytocompatibility and in vitro hemocompatibility were investigated. An in vivo study was performed to evaluate the osteogenic properties of hydrogels alone or with BM-MSCs encapsulated in them. The findings revealed that hydrogels retained high levels of collagen and glycosaminoglycans after successful decellularization. They were found to be cytocompatible and hemocompatible in vitro, and were able to gel with sufficient mechanical stability at physiological temperature. BM-MSCs survived in culture for at least 2 weeks as metabolically active when encapsulated in both DBM and DBM/nHAp. Preliminary in vivo study showed that DBM-nHAp has higher osteogenicity than DBM. Moreover, BM-MSC encapsulated DMB/nHAp showed predominant bone-like tissue formation at 30 days in the rat ectopic site compared to its cell-free form.
Collapse
Affiliation(s)
- Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey.,R&D Division, Biovalda Health Technologies, Inc., Ankara, Turkey.,Faculty of Science, Biochemistry Division, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Sarviya N, Basu SM, Induvahi V, Giri J. Laponite-Gelatin Nanofibrous Microsphere Promoting Human Dental Follicle Stem Cells Attachment and Osteogenic Differentiation for Noninvasive Stem Cell Transplantation. Macromol Biosci 2023; 23:e2200347. [PMID: 36353916 DOI: 10.1002/mabi.202200347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Nanofibrous microspheres (NFM) are emerging as prominent next-generation biomimetic injectable scaffold system for stem cell delivery and different tissue regeneration where nanofibrous topography facilitates ECM-like stem cells niches. Addition of osteogenic bioactive nanosilicate platelets within NFM can provide osteoconductive cues to facilitate matrix mediated osteogenic differentiation of stem cells and enhance the efficiency of bone tissue regeneration. In this study, gelatin nanofibrous microspheres are prepared containing fluoride-doped laponite XL21 (LP) using the emulsion mediated thermal induce phase separation (TIPS) technique. Systematic studies are performed to understand the effect of physicochemical properties of biomimicking NFM alone and with different concentrations of LP on human dental follicle stem cells (hDFSCs), their cellular attachment, proliferation, and osteogenic differentiation. The study highlights the effect of LP nanosilicate with biomimicking nanofibrous injectable scaffold system aiding in enhancing stem cell differentiation under normal physiological conditions compared to NFM without LP. The laponite-NFM shows suitability as excellent injectable biomaterials system for stem cell attachment, proliferation and osteogenic differentiation for stem cell transplantation and bone tissue regeneration.
Collapse
Affiliation(s)
- Nandini Sarviya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.,Department of Chemistry and Biotechnology, Swinburne Institute of Technology, Hawthorn, Victoria, Vic-3122, Australia
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India
| | - Veernala Induvahi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India
| |
Collapse
|
13
|
Li Q, Liu W, Hou W, Wu X, Wei W, Liu J, Hu Y, Dai H. Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Mater Today Bio 2022; 18:100536. [PMID: 36632630 PMCID: PMC9826821 DOI: 10.1016/j.mtbio.2022.100536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
The abundant neurovascular network in the periosteal fibrous layer is essential for regulating bone homeostasis and repairing bone defects. However, the majority of the current studies only focus on the structure or function, and most of them merely involve osteogenesis and angiogenesis, lacking an in-depth study of periosteal neurogenesis. In this study, a photothermal double-layer biomimetic periosteum with neurovascular coupling was proposed. The outer layer of biomimetic periosteum is a conventional electrospinning membrane to prevent soft tissue invasion, and the inner layer is an oriented nanofiber membrane to promote cell recruitment and angiogenesis. From the perspective of functional bionics, based on the whitlockite (WH) similar to bone composition, we doped Nd (the trivalent form of neodymium element) in it as the inducing element of photothermal response to prepare photothermal whitlockite (Nd@WH). The sustained release of Mg2+ in Nd@WH can effectively promote the up-regulation of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). The release of Ca2+ and PO4 3- ions and photothermal osteogenesis jointly promote bone regeneration. Under the combined effect of structure and function, the formation of nerves, blood vessels, and related collagens greatly simulates the microenvironment of extracellular matrix and periosteum regeneration and ultimately promotes bone regeneration. In this study, physical and chemical characterization proved that the bionic periosteum has good flexibility and operability. The in vitro cell experiment and in vivo calvarial defect model verified that PPCL/Nd@WH biomimetic periosteum had excellent bone tissue regeneration function compared with other groups. Finally, PPCL/Nd@WH provides a new idea for the design of bionic periosteum.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410008, China
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China,Corresponding author.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China,Shenzhen Institute of Wuhan University of Technology, Shenzhen, 518000, China,Corresponding author. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
14
|
Zhang Y, Luo W, Zheng L, Hu J, Nie L, Zeng H, Tan X, Jiang Y, Li Y, Zhao T, Yang Z, He TC, Zhang H. Efficient bone regeneration of BMP9-stimulated human periodontal ligament stem cells (hPDLSCs) in decellularized bone matrix (DBM) constructs to model maxillofacial intrabony defect repair. Stem Cell Res Ther 2022; 13:535. [PMID: 36575551 PMCID: PMC9795631 DOI: 10.1186/s13287-022-03221-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.
Collapse
Affiliation(s)
- Yuxin Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Hu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Nie
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huan Zeng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xi Tan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yucan Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yeming Li
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhuohui Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- grid.412578.d0000 0000 8736 9513Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Hongmei Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Guler S, Eichholz K, Chariyev-Prinz F, Pitacco P, Aydin HM, Kelly DJ, Vargel İ. Biofabrication of Poly(glycerol sebacate) Scaffolds Functionalized with a Decellularized Bone Extracellular Matrix for Bone Tissue Engineering. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010030. [PMID: 36671602 PMCID: PMC9854839 DOI: 10.3390/bioengineering10010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
The microarchitecture of bone tissue engineering (BTE) scaffolds has been shown to have a direct effect on the osteogenesis of mesenchymal stem cells (MSCs) and bone tissue regeneration. Poly(glycerol sebacate) (PGS) is a promising polymer that can be tailored to have specific mechanical properties, as well as be used to create microenvironments that are relevant in the context of BTE applications. In this study, we utilized PGS elastomer for the fabrication of a biocompatible and bioactive scaffold for BTE, with tissue-specific cues and a suitable microstructure for the osteogenic lineage commitment of MSCs. In order to achieve this, the PGS was functionalized with a decellularized bone (deB) extracellular matrix (ECM) (14% and 28% by weight) to enhance its osteoinductive potential. Two different pore sizes were fabricated (small: 100-150 μm and large: 250-355 μm) to determine a preferred pore size for in vitro osteogenesis. The decellularized bone ECM functionalization of the PGS not only improved initial cell attachment and osteogenesis but also enhanced the mechanical strength of the scaffold by up to 165 kPa. Furthermore, the constructs were also successfully tailored with an enhanced degradation rate/pH change and wettability. The highest bone-inserted small-pore scaffold had a 12% endpoint weight loss, and the pH was measured at around 7.14. The in vitro osteogenic differentiation of the MSCs in the PGS-deB blends revealed a better lineage commitment of the small-pore-sized and 28% (w/w) bone-inserted scaffolds, as evidenced by calcium quantification, ALP expression, and alizarin red staining. This study demonstrates a suitable pore size and amount of decellularized bone ECM for osteoinduction via precisely tailored PGS elastomer BTE scaffolds.
Collapse
Affiliation(s)
- Selcan Guler
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Farhad Chariyev-Prinz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 F6N2 Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - İbrahim Vargel
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
- Department of Plastic and Reconstructive Surgery, Hacettepe University Hospitals, 06230 Ankara, Turkey
- Correspondence:
| |
Collapse
|
16
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
17
|
Tan J, Zhang QY, Song YT, Huang K, Jiang YL, Chen J, Wang R, Zou CY, Li QJ, Qin BQ, Sheng N, Nie R, Feng ZY, Yang DZ, Yi WH, Xie HQ. Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective. COMPOSITES PART B: ENGINEERING 2022; 243:110149. [DOI: 10.1016/j.compositesb.2022.110149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
18
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
19
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
20
|
Advances in the application of regenerative medicine in prevention of post-endoscopic submucosal dissection for esophageal stenosis. J Transl Int Med 2022; 10:28-35. [PMID: 35702182 PMCID: PMC8997800 DOI: 10.2478/jtim-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) is a curative treatment for superficial esophageal cancer with distinct advantages. However, esophageal stenosis after ESD remains a tough problem, especially after large circumferential proportion of esophageal mucosa is removed, which limits the wide use of ESD, especially in circumferential lesions. In this scenario, preventive procedures are highly recommended against post-ESD esophageal stenosis. However, the efficacy and safety of traditional prophylactic methods (steroids, metal and biodegradable stents, balloon dilation, radial incision, etc.) are not satisfactory and novel strategies need to be developed. Regenerative medicine has been showing enormous potential in the reconstruction of organs including the esophagus. In this review, we aimed to describe the current status of regenerative medicine in prevention of post-ESD esophageal stenosis. Cell injection, cell sheet transplantation, and extracellular matrix implantation have been proved effective. However, numerous obstacles still exist and further studies are necessary.
Collapse
|
21
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
22
|
Peranidze K, Safronova TV, Kildeeva NR. Fibrous Polymer-Based Composites Obtained by Electrospinning for Bone Tissue Engineering. Polymers (Basel) 2021; 14:96. [PMID: 35012119 PMCID: PMC8747636 DOI: 10.3390/polym14010096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, the significantly developing fields of tissue engineering related to the fabrication of polymer-based materials that possess microenvironments suitable to provide cell attachment and promote cell differentiation and proliferation involve various materials and approaches. Biomimicking approach in tissue engineering is aimed at the development of a highly biocompatible and bioactive material that would most accurately imitate the structural features of the native extracellular matrix consisting of specially arranged fibrous constructions. For this reason, the present research is devoted to the discussion of promising fibrous materials for bone tissue regeneration obtained by electrospinning techniques. In this brief review, we focus on the recently presented natural and synthetic polymers, as well as their combinations with each other and with bioactive inorganic incorporations in order to form composite electrospun scaffolds. The application of several electrospinning techniques in relation to a number of polymers is touched upon. Additionally, the efficiency of nanofibrous composite materials intended for use in bone tissue engineering is discussed based on biological activity and physiochemical characteristics.
Collapse
Affiliation(s)
- Kristina Peranidze
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Tatiana V Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nataliya R Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin State University of Russia, Malaya Kaluzhskaya 1, 119071 Moscow, Russia
| |
Collapse
|
23
|
Malagón-Escandón A, Hautefeuille M, Jimenez-Díaz E, Arenas-Alatorre J, Saniger JM, Badillo-Ramírez I, Vazquez N, Piñón-Zarate G, Castell-Rodríguez A. Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis. Polymers (Basel) 2021; 13:4390. [PMID: 34960941 PMCID: PMC8705055 DOI: 10.3390/polym13244390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The use of three-dimensional porous scaffolds derived from decellularized extracellular matrix (ECM) is increasing for functional repair and regeneration of injured bone tissue. Because these scaffolds retain their native structures and bioactive molecules, in addition to showing low immunogenicity and good biodegradability, they can promote tissue repair and regeneration. Nonetheless, imitating these features in synthetic materials represents a challenging task. Furthermore, due to the complexity of bone tissue, different processes are necessary to maintain these characteristics. We present a novel approach using decellularized ECM material derived from bovine cancellous bone by demineralization, decellularization, and hydrolysis of collagen to obtain a three-dimensional porous scaffold. This study demonstrates that the three-dimensional porous scaffold obtained from bovine bone retained its osteoconductive and osteoinductive properties and presented osteogenic potential when seeded with human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs). Based on its characteristics, the scaffold described in this work potentially represents a therapeutic strategy for bone repair.
Collapse
Affiliation(s)
- Alda Malagón-Escandón
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | | - Edgar Jimenez-Díaz
- Facultad de Ciencias, UNAM, Mexico City C.P. 04510, Mexico; (M.H.); (E.J.-D.)
| | | | - José Manuel Saniger
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Nadia Vazquez
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | - Gabriela Piñón-Zarate
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | |
Collapse
|