1
|
Wan Y, Li W, Zhu H, Ai S, Lin W. Development of cysteine-sensitive bimodal probes for in situ monitoring of early-stage pulmonary fibrosis progression and therapeutic effects. J Mater Chem B 2025; 13:5051-5057. [PMID: 40200817 DOI: 10.1039/d5tb00183h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by excessive extracellular matrix deposition and lung scarring, leading to impaired lung function, severe respiratory distress, and potentially fatal outcomes. Early diagnosis of PF is crucial for optimizing treatment strategies to improve patient prognosis. However, an activated near-infrared fluorescent (NIRF) and photoacoustic (PA) bimodal probe for non-invasive in situ imaging of PF is still lacking. In this study, we developed a novel cysteine-sensitive NIRF/PA dual-modal probe, MR-Cys, for in situ monitoring of early progression and the therapeutic response in a mouse model of PF. The probe MR-Cys selectively detects cysteine (Cys) levels in vivo, thereby activating both NIRF and PA signals. Using NIRF/PA dual-modal imaging technology, MR-Cys successfully tracked fluctuations in Cys levels within the PF mouse model. After treatment with nintedanib (OFEV), a notable decrease in both PA and NIRF signal intensities was observed in the treated mice, indicating that MR-Cys can be used to assess the therapeutic efficacy for PF. Therefore, MR-Cys not only holds great promise for early detection of pulmonary fibrosis progression, but also offers a precise monitoring tool for the optimization of personalized treatment plans.
Collapse
Affiliation(s)
- Yang Wan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Huayong Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Sixin Ai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Junjie L, Cheng G, Kangkang L, Yu L, Zhiyao Y, Xudong W, Xianmei Z, Xiaomin L. Citrus alkaline extracts improve LPS-induced pulmonary fibrosis via epithelial mesenchymal transition signals. Chin Med 2023; 18:62. [PMID: 37248506 DOI: 10.1186/s13020-023-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a serious life threatening clinical critical illness. ARDS-related pulmonary fibrosis is a common complication of ARDS. The occurrence of early pulmonary fibrosis indicates a higher incidence and mortality of multiple organ failure. LPS-induced ARDS-related pulmonary fibrosis model in mice was established in this study. And we have explored the anti-pulmonary fibrosis effects and molecular mechanisms of the Citrus Alkaline Extracts (CAE) in vivo and in vitro. METHODS Pulmonary fibrosis mouse model and lung epithelial cell injury model were established in this study. H&E, Masson and Sirius Red staining were used to estimate lung tissue damage. Immunohistochemistry and western blotting were used to analyze proteins expression. Protein-protein interaction was observed by Co-Immunoprecipitation. Systemic impact of CAE on signaling pathway was examined by RNA-seq. RESULTS Through H&E, Masson and Sirius Red staining, it was convincingly indicated that therapeutic administration of CAE alleviated lung injury and fibrosis, while pretreated administration of CAE showed weak improvement. In vitro experiments showed that CAE had dual regulation to E-cadherin and N-cadherin, the important indicators of epithelial-mesenchymal transition (EMT). And it was further demonstrated that CAE reversed TGF-β1-induced EMT mainly through Wnt/β-catenin, Stat3/6 and COX2/PGE2 signals. Through RNA-Seq, we discovered important mechanisms by which CAE exerts its therapeutic effect. And network pharmacology analysis demonstrated core potential targets of CAE in EMT. CONCLUSION Thus, this study provides new therapeutic effects of CAE in anti-fibrosis, and offers potential mechanisms for CAE in LPS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Li Junjie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Gu Cheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China
| | - Luo Kangkang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Li Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yuan Zhiyao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wu Xudong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Zhou Xianmei
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| | - Lu Xiaomin
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| |
Collapse
|
3
|
Li S, Wang P, Liu Y, Yang K, Zhong R, Cheng D, He L. A mitochondrial-targeted near-infrared fluorescent probe for visualizing the fluctuation of hypochlorite acid in idiopathic pulmonary fibrosis mice. Anal Chim Acta 2023; 1239:340731. [PMID: 36628728 DOI: 10.1016/j.aca.2022.340731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory disease destroying lungs irreversibly with high mortality rates. There are challenges in diagnosing IPF and treating it at an early stage. Mounting evidence suggests that hypochlorous acid (HClO) can help in diagnosing inflammation and relevant conditions. Pulmonary fibrosis is linked to the mitochondrial oxidative stress where excessive HClO production is a key molecular mechanism. Measuring mitochondrial HClO levels assists in the investigations of how the mitochondrial oxidative stress affects IPF. Herein, NIR-PTZ-HClO was developed and optimized as a probe for detecting fluctuations in HClO concentrations of cells and mice models through near-infrared (NIR) fluorescence. The probe featured large Stokes shift of 150 nm, NIR turn-on signal at 650 nm, high sensitivity (45-fold) and quick HClO detection (2 s). The probe is selective for HClO in the presence of range of other analytes. NIR-PTZ-HClO visualized both endogenous and exogenous HClO in living cells (RAW264.7, H460 and A549). The probe monitored HClO in mice models with IPF and moreover the HClO profile could be tracked during the IPF process. The probe also detected precipitous decrease in HClO levels in IPF mice treated with OFEV. NIR-PTZ-HClO probe has thus the potential for earlier diagnosis of lung fibrosis, thereby improving the treatment efficacy.
Collapse
Affiliation(s)
- Songjiao Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Peipei Wang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Ying Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Ke Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Rongbin Zhong
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Dan Cheng
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| | - Longwei He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
4
|
Zhao J, Ma T, Chang B, Fang J. Recent Progress on NIR Fluorescent Probes for Enzymes. Molecules 2022; 27:5922. [PMID: 36144654 PMCID: PMC9503431 DOI: 10.3390/molecules27185922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The majority of diseases' biomarkers are enzymes, and the regulation of enzymes is fundamental but crucial. Biological system disorders and diseases can result from abnormal enzymatic activity. Given the biological significance of enzymes, researchers have devised a plethora of tools to map the activity of particular enzymes in order to gain insight regarding their function and distribution. Near-infrared (NIR) fluorescence imaging studies on enzymes may help to better understand their roles in living systems due to their natural imaging advantages. We review the NIR fluorescent probe design strategies that have been attempted by researchers to develop NIR fluorescent sensors of enzymes, and these works have provided deep and intuitive insights into the study of enzymes in biological systems. The recent enzyme-activated NIR fluorescent probes and their applications in imaging are summarized, and the prospects and challenges of developing enzyme-activated NIR fluorescent probes are discussed.
Collapse
Affiliation(s)
| | | | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Sun X, Huang Y, Zhu S, Yan J, Gan K, Xu Z, Wang S, Kang X, Zhang J, Sun W. Yishen Qingli Heluo Granule in the Treatment of Chronic Kidney Disease: Network Pharmacology Analysis and Experimental Validation. Drug Des Devel Ther 2022; 16:769-787. [PMID: 35355655 PMCID: PMC8959874 DOI: 10.2147/dddt.s348335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Chronic kidney disease (CKD) is considered a global public health problem with high morbidity and mortality. Yishen Qingli Heluo granule (YQHG) is representative traditional Chinese medicine (TCM) remedy for clinical treatment of CKD. This study aims to explore the mechanism of YQHG on CKD through network pharmacology and experimental validation. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and wide-scale literature mining were applied to screen active compounds of YQHG. Multiple bioinformatic tools and online databases were applied by us to obtain relevant targets of YQHG and CKD. The intersection targets between YQHG and CKD were considered as candidate targets. The compound-target, herb-candidate target and protein–protein interaction networks were constructed and visualized for topological analyses. GO and KEGG enrichment analyses were conducted to determine the biological processes and signaling pathways. Molecular docking was used to verify the reliability of network pharmacology. Finally, pharmacological evaluation was performed to explore the mechanism of YQHG against CKD on a 5/6 nephrectomy model. Results Seventy-nine candidate targets, ten core biological processes and one key signaling pathway (p53) were screened. PTGS2 was identified as a key target based on H-CT network. The molecular docking showed that Quercetin, Kaempferol, Luteolin were three key compounds with the best binding activity. In addition, IL6 and Quercetin could form a stable complex with high binding affinity (−7.29 kcal/mol). In vivo experiment revealed that YQHG improved kidney function and fibrosis in 5/6 nephrectomized rats. Moreover, the decreased expression of PTGS2, IL6, and the increased expression of p53 were observed in kidney tissue. Notably, the gut microbiota of rats treated with YQHG was reshaped, which was characterized by a reduced ratio of Firmicutes/Bacteroidota. Conclusion Our results predicted and verified the potential targets of YQHG on CKD from a holistic perspective, and provided valuable direction for the further research of YQHG. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/02pumepfbPI
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jin Yan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Gan
- Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoyu Kang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
6
|
Xu F, Wang Q, Jiang L, Zhu F, Yang L, Zhang S, Song X. Evaluation of Nitric Oxide Fluctuation Via a Fast, Responsive Fluorescent Probe in Idiopathic Pulmonary Fibrosis Cells and Mice Models. Anal Chem 2022; 94:4072-4077. [PMID: 35194985 DOI: 10.1021/acs.analchem.1c05643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial pneumonia with unknown pathogenesis. Early diagnosis and therapeutic intervention are essential for improving the prognosis of patients with IPF. The level of nitric oxide upregulates in the alveoli of IPF patients, which is correlated with the severity of the disease. Herein, we report a fluorescent probe DCM-nitric oxide (NO) to detect IPF by monitoring the concentration changes of NO. This probe displays a fast response time and a good linear response to NO in vitro. Fluorescence imaging experiments with probe DCM-NO revealed that the level of intracellular NO increases in the pulmonary fibrosis cells and IPF mice models. Probe DCM-NO displayed a strong red fluorescence in IPF mice models. However, a declining fluorescence was evidenced in the OFEV-treated IPF mice, implying that DCM-NO is capable of evaluating the therapeutic effects on IPF. Thus, probe DCM-NO can quickly predict the progression of pulmonary fibrosis at an early stage and thus help improve the effective treatment.
Collapse
Affiliation(s)
- Feifei Xu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Qing Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ling Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Fawei Zhu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lei Yang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
7
|
Liu Z, Tang X, Zhu Z, Ma X, Zhou W, Guan W. Recent Advances in Fluorescence Imaging of Pulmonary Fibrosis in Animal Models. Front Mol Biosci 2021; 8:773162. [PMID: 34796202 PMCID: PMC8592921 DOI: 10.3389/fmolb.2021.773162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a lung disease that may cause impaired gas exchange and respiratory failure while being difficult to treat. Rapid, sensitive, and accurate detection of lung tissue and cell changes is essential for the effective diagnosis and treatment of PF. Currently, the commonly-used high-resolution computed tomography (HRCT) imaging has been challenging to distinguish early PF from other pathological processes in the lung structure. Magnetic resonance imaging (MRI) using hyperpolarized gases is hampered by the higher cost to become a routine diagnostic tool. As a result, the development of new PF imaging technologies may be a promising solution. Here, we summarize and discuss recent advances in fluorescence imaging as a talented optical technique for the diagnosis and evaluation of PF, including collagen imaging, oxidative stress, inflammation, and PF-related biomarkers. The design strategies of the probes for fluorescence imaging (including multimodal imaging) of PF are briefly described, which can provide new ideas for the future PF-related imaging research. It is hoped that this review will promote the translation of fluorescence imaging into a clinically usable assay in PF.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaofang Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zongling Zhu
- Department of Respiratory Medicine, Pukou District Hospital of Chinese Medicine, Pukou Branch of Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunxun Ma
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|