1
|
Xu W, Wang M, Liu X, Ding Y, Fu J, Zhang P. Recent advances in chemodynamic nanotherapeutics to overcome multidrug resistance in cancers. Biomed Pharmacother 2025; 184:117901. [PMID: 39933445 DOI: 10.1016/j.biopha.2025.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Multidrug resistance (MDR) has become a major challenge in cancer therapy, it results in the failure of chemotherapy and anticancer drug development. Chemodynamic therapy (CDT), an emerging cancer treatment strategy, has been reported as a novel approach for cancer treatment characterized by low toxicity and minimal side effects. By generating robust cytotoxic hydroxyl radicals (·OH) via Fenton/Fenton-like reaction, CDT may cause cellular damage and oxidative stress-induced cell death. In recent years, many therapies based on CDT and/or combined with other treatment modalities are reported and exhibit exciting treatment efficacy in cancer treatment, such as photothermal therapy, photodynamic therapy, sonodynamic therapy, chemotherapy, starvation therapy and gas therapy etc. These combination therapies exhibit synergistic effects, significantly improving anticancer outcomes compared to CDT alone. Herein, we provide a comprehensive overview of CDT-based strategies in cancer treatment, highlighting developments of CDT and CDT-based combination strategies in tumor therapy, especially in overcoming MDR challenges. Finally, the opportunities and challenges of CDT and CDT-combination therapy in the clinical application are also addressed.
Collapse
Affiliation(s)
- Wenjia Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Min Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xinyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yucui Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianlong Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Meng X, Tian L, Zhang J, Wang J, Cao X, Hu Z, Sun Y, Dai Z, Zheng X. Tumor microenvironment-regulated nanoplatform for enhanced chemotherapy, cuproptosis and nonferrous ferroptosis combined cancer therapy. J Mater Chem B 2025; 13:1089-1099. [PMID: 39652201 DOI: 10.1039/d4tb02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Therapeutic approaches combining various treatments have attracted intensive interests for tumor therapy. Nevertheless, these strategies still face many obstacles, such as overexpressed GSH and hypoxia, owing to the intricate tumor microenvironment (TME). Herein, a versatile nanoplatform, CeO2@CuO2@DOX-RSL3@HA (CCDRH), was initially constructed for promoting the antitumor efficiency via regulation of the TME. The CCDRH was prepared taking mixed valence CeO2 as the nanocarrier, followed by the attachment of CuO2 nanodots, DOX and RSL3 and the camouflaging of hyaluronic acid. The CuO2 could disassemble in the acidic TME to release Cu2+ and H2O2. The POD- and CAT-mimicking activities of CeO2 could convert H2O2 to ˙OH and O2, leading to the enhancement of chemo-chemodynamic therapy. Meanwhile, RSL3 could effectively suppress GPX4 expression, and the overloaded Cu2+ and Ce4+ could deplete excess GSH, resulting in an intensive accumulation of LPO and significant nonferrous ferroptosis. Additionally, Cu+ induces the oligomerization of lipoylated DLAT and downregulates iron-sulfur cluster proteins, resulting in potent cellular cuproptosis. The experimental results revealed that CCDRH exhibited high performance in tumor inhibition, which is attributed to the combined effect of enhanced chemotherapy, ferroptosis and cuproptosis. The study provides a new approach for improving anticancer efficiency via regulation of the TME.
Collapse
Affiliation(s)
- Xiangyu Meng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan 250000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| | - Lu Tian
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| | - Jingmei Zhang
- School of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Jiaoyu Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan 250000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| | - Xuewei Cao
- Qilu Normal University, Jinan 250000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
- College of Medicine, Linyi University, Linyi 276000, P. R. China
| | - Zunfu Hu
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| | - Yunqiang Sun
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zhichao Dai
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Qilu Normal University, Jinan 250000, P. R. China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
3
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
4
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
5
|
Wu H, Xie L, Wang S, Yu T, Zhang Y. Synthesis of an "all-in-one" nanotherapeutic platform for triple-amplification chemodynamic therapy of osteosarcoma. Colloids Surf A Physicochem Eng Asp 2023; 673:131788. [DOI: 10.1016/j.colsurfa.2023.131788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
6
|
Xiao Y, Lai F, Xu M, Zheng D, Hu Y, Sun M, Lv N. Dual-Functional Nanoplatform Based on Bimetallic Metal-Organic Frameworks for Synergistic Starvation and Chemodynamic Therapy. ACS Biomater Sci Eng 2023; 9:1991-2000. [PMID: 36989499 DOI: 10.1021/acsbiomaterials.2c01476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) mediated by nanozymes has been extensively studied in oral squamous cell carcinoma. However, the low catalytic efficiency due to insufficient H2O2 in the TME is still a major challenge for its clinical translation. Herein, we present an antitumor nanoplatform based on a Mn-Co organometallic framework material (MnCoMOF), which shows peroxidase-like (POD-like) activity, loaded with glucose oxidase (GOx@MnCoMOF), demonstrating the ability of H2O2 self-supply and H2O2 conversion to toxic hydroxyl radicals. The encapsulated GOx efficiently catalyzes glucose into gluconic acid and H2O2 at the tumor site, which can cut off the energy supply to inhibit tumor growth and produce a large amount of H2O2 and acid to compensate for their lack in the tumor microenvironment. The POD-like activity of MnCoMOF can convert H2O2 into hydroxyl radicals and eliminate tumor cells. The nanoplatform exhibits enhanced tumor cell cytotoxicity in a high-glucose medium compared with a low-glucose medium, illustrating sufficient generation of H2O2 from glucose by GOx. The in vivo results indicate that GOx@MnCoMOF has excellent antitumor efficacy and can remodel the immune-suppressive tumor microenvironment. In conclusion, the GOx@MnCoMOF nanoplatform possesses dual enzymatic activities, i.e., POD-like and glucose oxidase, to achieve improved tumor-suppressive efficiency through synergistic starvation and chemodynamic therapy, thus providing a new strategy for the clinical treatment of oral cancer.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fuxuan Lai
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Danning Zheng
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei 230051, China
| | - Yi Hu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Ming Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Lv
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
7
|
Yan L, Lin S, Wang L, Wang Y, Zhou D, Zeng Q. Multifunctional and multimodality theranostic nanomedicine for enhanced phototherapy. J Mater Chem B 2023; 11:1808-1817. [PMID: 36734460 DOI: 10.1039/d2tb02345h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in recent years for its favorable therapeutic efficacy in cancer therapy. However, PDT alone is insufficient to improve the therapeutic efficiency mainly due to the limited penetration depth of light, the insufficient O2 supply in the hypoxic microenvironment, and the high level of reducing substances in cancer cells. To overcome these limitations, a multifunctional MnO2 nanoparticle was constructed with honeycomb MnO2 which was loaded with the photosensitizer Ce6 and modified with polydopamine on its surface (HMnO2/C&P) to achieve efficient PDT/mild photothermal treatment (PTT) combination therapy. HMnO2/C&P had high drug loading contents (11.2% Ce6) and can be responsive to the tumor microenvironment (TME), supply O2 to alleviate the hypoxic microenvironment, and clear GSH to reduce the consumption of ROS, thus enhancing the PDT effect. The introduction of PDA can improve the stability of HMnO2/C&P, and further give the ability of PTT to act as nanomedicine. The results of in vitro and in vivo experiments show that HMnO2/C&P based PDT/mild PTT combination therapy has an excellent inhibitory effect on tumor growth. Meanwhile, HMnO2/C&P can act as a fluorescence imaging reagent and a TME triggerable magnetic resonance imaging (MRI) contrast agent, thus having excellent multimodal self-tracking abilities. Collectively, this study provides a new perspective on the design of multifunctional theranostic nanomedicine to maximize the efficacy of cancer phototherapy.
Collapse
Affiliation(s)
- Libiao Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Siqi Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Qingbing Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| |
Collapse
|
8
|
Zhang H, Tang W, Gong Q, Yang X, Sun Y, Dai Z, Hu Z, Zheng X. A dual gate-controlled intelligent nanoreactor enables collaborative precise treatment for cancer nanotherapy. NANOSCALE 2022; 14:13113-13122. [PMID: 36052962 DOI: 10.1039/d2nr03676b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, disulfiram (DSF), approved by the FDA as an anti-alcoholic drug, has been proved as an effective antitumor drug after chelating with Cu2+. To overcome the shortage of intracellular Cu2+, we have constructed a dual gate-controlled intelligent nanoreactor (HA-DSF@HCuS@FePtMn, HDHF) via the ingenious combination of hollow copper sulfide (HCuS) nanoparticles, DSF and FePtMn nanocrystals. HDHF has a NIR-actuated gate and enzyme-actuated gate that could be opened in the hyaluronidase-abundant tumor microenvironment with NIR laser irradiation to trigger drug (DSF/FePtMn) release and synergistic therapy. Moreover, the FePtMn nanocrystals could continuously release Fe2+, which could catalyze H2O2 into highly cytotoxic hydroxyl radicals (˙OH), triggering chemodynamic therapy (CDT). When exposed to NIR laser, HCuS could collapse and release Cu2+, which could immediately chelate with DSF, forming the effective anticancer drug (Cu(DTC)2) and enabling DSF-based chemotherapy. More importantly, the efficient photothermal therapy (PTT) effect of HCuS could accelerate the FePtMn-based CDT and the release of Cu2+/DSF, improving tumor treatment efficiency. Thus, this study represents a distinctive paradigm of a dual gate-controlled intelligent nanoreactor enabled PTT-augmented DSF-based chemotherapy and FePtMn-based CDT for cancer nanotherapy.
Collapse
Affiliation(s)
- Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Qi Gong
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xinyi Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|
9
|
Zhang F, Xin C, Dai Z, Hu H, An Q, Wang F, Hu Z, Sun Y, Tian L, Zheng X. Oncocyte Membrane-Camouflaged Multi-Stimuli-Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40633-40644. [PMID: 36052606 DOI: 10.1021/acsami.2c11200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination of various therapeutic modalities has received considerable attention for improving antitumor performance. Herein, an innovative nanohybrid, namely CaO2@FePt-DOX@PDA@CM (CFDPM), was developed for synergistic chemotherapy/chemodynamic therapy/Ca2+ overloading-mediated amplification of tumor oxidative stress and photothermal enhanced cancer therapy. Camouflage of the 4T1 cell membrane enabled CFDPM to escape the immune surveillance and accumulate in the tumor tissue. Ca2+, released from CaO2, could lead to mitochondrial dysfunction and facilitate the production of reactive oxygen species to amplify intracellular oxidative stress. Meanwhile, the increase of H2O2 concentration could enhance the efficiency of the chemodynamic therapy (CDT). Moreover, the hypoxic condition could be alleviated remarkably, which is attributed to the sufficient O2 supply by CaO2, resulting in the suppression of drug resistance and promotion of the chemotherapeutic effect. The nanohybrids involving Ca2+ overloading/CDT/chemotherapy could synergistically amplify the tumor oxidative stresses and remarkably aggravate the death of cancer cells. Significantly, the excellent photothermal conversion performance of CFDPM could further promote the tumoricidal effect. The in vitro and in vivo studies revealed that CFDPM could effectively advance the therapeutic efficiency via the cooperation of various therapeutic modalities to optimize their individual virtue, which would open a valuable avenue for effective cancer treatment.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan 250000, China
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Heli Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Qi An
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Fei Wang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zunfu Hu
- School of Materials Science and Engineering, Linyi Universitys, Linyi 276000, China
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
10
|
Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022; 17:2707-2731. [PMID: 35747168 PMCID: PMC9213040 DOI: 10.2147/ijn.s364840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Ordinarily, cancer cells possess features of abnormally increased nutrient intake and metabolic pathways. The disorder of glucose metabolism is the most important among them. Therefore, starvation therapy targeting glucose metabolism specifically, which results in metabolic disorders, restricted synthesis, and inhibition of tumor growth, has been developed for cancer therapy. However, issues such as inadequate targeting effectiveness and drug tolerance impede their clinical transformation. In recent years, nanomaterial-assisted starvation treatment has made significant progress in addressing these challenges, whether as a monotherapy or in combination with other medications. Herein, representative researches on the construction of nanosystems conducting starvation therapy are introduced. Elaborate designs and interactions between different treatment mechanisms are meticulously mentioned. Not only are traditional treatments based on glucose oxidase involved, but also newly sprung small molecule agents targeting glucose metabolism. The obstacles and potential for advancing these anticancer therapies were also highlighted in this review.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xianghui Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
11
|
Zhang C, Leng Z, Wang Y, Ran L, Qin X, Xin H, Xu X, Zhang G, Xu Z. PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer. J Nanobiotechnology 2022; 20:264. [PMID: 35672821 PMCID: PMC9172083 DOI: 10.1186/s12951-022-01482-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The application of chemodynamic therapy (CDT) for cancer is a serious challenge owing to the low efficiency of the Fenton catalyst and insufficient H2O2 expression in cells. Herein, we fabricated a PDGFB targeting, biodegradable FePt alloy assembly for magnetic resonance imaging (MRI)-guided chemotherapy and starving-enhanced chemodynamic therapy for cancer using PDGFB targeting, pH-sensitive liposome-coated FePt alloys, and GOx (pLFePt-GOx). We found that the Fenton-catalytic activity of FePt alloys was far stronger than that of traditional ultrasmall iron oxide nanoparticle (UION). Upon entry into cancer cells, pLFePt-GOx nanoliposomes degraded into many tiny FePt alloys and released GOx owing to the weakly acidic nature of the tumor microenvironment (TME). The released GOx-mediated glucose consumption not only caused a starvation status but also increased the level of cellular H2O2 and acidity, promoting Fenton reaction by FePt alloys and resulting in an increase in reactive oxygen species (ROS) accumulation in cells, which ultimately realized starving-enhanced chemodynamic process for killing tumor cells. The anticancer mechanism of pLFePt-GOx involved ROS-mediated apoptosis and ferroptosis, and glucose depletion-mediated starvation death. In the in vivo assay, the systemic delivery of pLFePt-GOx showed excellent antitumor activity with low biological toxicity and significantly enhanced T2-weighted magnetic resonance imaging (MRI) signal of the tumor, indicating that pLFePt-GOx can serve as a highly efficient theranostic tool for cancer. This work thus describes an effective, novel multi-modal cancer theranostic system.
Collapse
|
12
|
Zhang K, Ma Z, Li S, Wu Y, Zhang J, Zhang W, Zhao Y, Han H. Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials 2022; 284:121502. [PMID: 35390708 DOI: 10.1016/j.biomaterials.2022.121502] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis, a newfound non-apoptotic cell death pathway that is iron- and reactive oxygen species (ROS)-dependent, has shown a promise for tumor treatment. However, engineering ferroptosis inducers with sufficient hydrogen peroxide (H2O2) and iron supplying capacity remains a great challenge. To address this issue, herein, we report a powerful nanoreactor by modifying MnO2, glucose oxidase, and polyethylene glycol on iron-based metal-organic framework nanoparticles for disrupting redox and iron metabolism homeostasis, directly providing the Fenton reaction-independent downstream ferroptosis for tumor therapy. By consuming glutathione and oxidizing glucose to increase the H2O2 level in cancer cells and downregulating ferroportin 1 to accumulate intracellular iron ions, the homeostasis disruptor could effectively enhance the ferroptosis. Subsequently, the ferroptosis cells release tumor immune-associated antigens, which combine with in situ injected aptamer-PD-L1 to further strengthen the tumor treatment efficiency. This work not only paves a way to enhance the efficacy of ferroptosis-based cancer therapy by associating intracellular redox homeostasis with the iron metabolism system in tumor cells but also offers an engineered nanoreactor as a promising mimetic antigen for activating immunotherapy.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China
| | - Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuting Li
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China
| | - Yang Wu
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China
| | - Jin Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China
| | - Weiyun Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 30070, Hubei, PR China.
| |
Collapse
|
13
|
Zhu S, Wang DQ, Sun XH, Li XY, Xiao HF, Sun WR, Wang XT, Li YJ, Wang PY, Xie SY, Wang RR. Mitochondria-Targeted Degradable Nanocomposite Combined with Laser and Ultrasound for Synergistic Tumor Therapies. J Biomed Nanotechnol 2022; 18:763-777. [PMID: 35715902 DOI: 10.1166/jbn.2022.3287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO₂-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO₂-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO₂, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO₂-IR780 was delivered to the tumor site, MnO₂ was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO₂-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO₂-IR780 for safe and highly-efficiency synergistic therapy for cancer.
Collapse
Affiliation(s)
- Shuang Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - De-Qiang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xue-Hua Sun
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, PR China
| | - Xin-Yu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xing-Tao Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
14
|
Xiao HF, Yu H, Wang DQ, Liu XZ, Sun WR, Li YJ, Sun GB, Liang Y, Sun HF, Wang PY, Xie SY, Wang RR. Dual-Targeted Fe₃O₄@MnO₂ Nanoflowers for Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic/Chemotherapy for Tumor. J Biomed Nanotechnol 2022; 18:352-368. [PMID: 35484752 DOI: 10.1166/jbn.2022.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T₂-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.
Collapse
Affiliation(s)
- Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - De-Qiang Wang
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Xin-Zheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Guang-Bin Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
15
|
Chang ZX, Li CH, Chang YC, Huang CYF, Chan MH, Hsiao M. Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications. NANOSCALE ADVANCES 2022; 4:377-386. [PMID: 36132698 PMCID: PMC9419603 DOI: 10.1039/d1na00613d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
Given the high incidence and mortality of cancer, current research is focused on designing efficient diagnostic methods. At present, clinical diagnoses are made based on X-ray, computed tomography, magnetic resonance imaging (MRI), ultrasound, and fiber optic endoscopy. MRI is a powerful diagnostic tool because it is non-invasive, has a high spatial resolution, uses non-ionizing radiation, and has good soft-tissue contrast. However, the long relaxation time of water protons may result in the inability to distinguish different tissues. To overcome this drawback of MRI, magnetic resonance contrast agents can enhance the contrast, improve the sensitivity of MRI-based diagnoses, increase the success rate of surgery, and reduce tumor recurrence. This review focuses on using iron-platinum (FePt) nanoparticles (NPs) in T2-weighted MRI to detect tumor location based on dark-field changes. In addition, existing methods for optimizing and improving FePt NPs are reviewed, and the MRI applications of FePt NPs are discussed. FePT NPs are expected to strengthen MRI resolution, thereby helping to inhibit tumor development.
Collapse
Affiliation(s)
- Zhi-Xuan Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | | | - Michael Hsiao
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Biochemistry College of Medicine, Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|