1
|
Sufian A, Bhattacherjee D, Barman P, Kesarwani R, Das S, Bhabak KP. Synthetic organic polysulfanes as H 2S donors and anticancer agents. Chem Commun (Camb) 2025; 61:4647-4661. [PMID: 40017264 DOI: 10.1039/d5cc00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Organic polysulfanes are one of the major classes of organic sulfur compounds (OSCs) with pharmaceutical and medicinal implications for various diseases. The biological impacts of organic polysulfanes, particularly their role as hydrogen sulfide (H2S) donors, have gained significant attention in scientific research over the past two decades. Notably, H2S has been recognized for its multiple bio-potentials, including its ability to inhibit the proliferation of cancer cells. The feasible reaction of the polysulfane unit of organopolysulfanes with nucleophilic biothiols leads to the sustained release of H2S. The released H2S from various organopolysulfanes opens up new therapeutic windows for utilizing them as potent anticancer and chemopreventive agents for treating different organ-specific cancers. Despite these promising therapeutic implications, a comprehensive understanding of the synthesis and capability of various synthetic organopolysulfanes to release H2S, along with the implications of the released H2S for their pharmacological potentials, remain elusive. Therefore, this review aims to fill the gap by exploring the synthesis and H2S donating capacities of various synthetic organopolysulfanes and their pharmacological benefits for cancer treatment. The insights provided here will help correlate synthetic organopolysulfanes as H2S donors with their therapeutic potentials, offering a clearer perspective on their roles in drug development.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Rahul Kesarwani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Samanaway Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
2
|
Badirujjaman M, Thummer RP, Bhabak KP. Esterase-Responsive Self-Immolative Prodrugs for the Sustained Delivery of the Anticancer Drug 5-Fluorouracil with Turn-On Fluorescence. Chem Asian J 2025; 20:e202400846. [PMID: 39484866 DOI: 10.1002/asia.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Stimuli-responsive prodrugs of anticancer drugs are advantageous for the selective delivery of drugs to cancer cells with minimized off-target side effects. In the present study, esterase-activatable fluorogenic prodrugs of the chemotherapeutic drug 5-fluorouracil (5-FU) have been rationally designed and synthesized using multi-step organic synthesis. While 5-FU was connected directly with the fluorophore via a C-N bond in the prodrug BJ-50, an additional self-immolative benzylic spacer with a carbonate linker was incorporated in the prodrug BJ-92. Although absorption and emission spectroscopic studies revealed the activation of both the prodrugs by porcine liver esterase (PLE), reverse-phase HPLC studies confirmed the inability of BJ-50 to release the active drug 5-FU. In contrast, a sustained release of 5-FU and Cou-OH was observed from BJ-92 in the presence of PLE. The endogenous esterase-mediated activation of the prodrug BJ-92 was validated by the turn-on fluorescence in A549 cells and the anti-proliferative activities in A549, and HEK-293 cells. Modulation of the expression of a few cancer marker proteins by BJ-92 and 5-FU was studied to evaluate their anticancer activities. As esterases are overexpressed in cancer cells, the prodrug in the present study would be helpful in selectively delivering 5-FU to cancer cells with reduced off-target side-effects.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Misra R, Barman P, Bhabak KP. Esterase-Responsive Fluorogenic Prodrugs of Aldose Reductase Inhibitor Epalrestat: An Innovative Strategy toward Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2024; 7:6542-6553. [PMID: 39146213 DOI: 10.1021/acsabm.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In addition to the conventional chemotherapeutic drugs, potent inhibitors of key enzymes that are differentially overexpressed in cancer cells and associated with its progression are often considered as the drugs of choice for treating cancer. Aldose reductase (AR), which is primarily associated with complications of diabetes, is known to be closely related to the development of cancer and drug resistance. Epalrestat (EPA), an FDA-approved drug, is a potent inhibitor of AR and exhibits anticancer activity. However, its poor pharmacokinetic properties limit its bioavailability and therapeutic benefits. We report herein the first examples of esterase-responsive turn-on fluorogenic prodrugs for the sustained release of EPA to cancer cells with a turn-on fluorescence readout. Carboxylesterases are known to be overexpressed in several organ-specific cancer cells and help in selective uncaging of drug from the prodrugs. The prodrugs were synthesized using a multistep organic synthesis and successfully characterized. Absorption and emission spectroscopic studies indicated successful activation of the prodrugs in the presence of porcine liver esterase (PLE) under physiological condition. HPLC studies revealed a simultaneous release of both the drug and the fluorophore from the prodrugs over time with mechanistic insights. While the inhibitory potential of EPA released from the prodrugs toward the enzyme AR was validated in the aqueous medium, the anticancer activity of the prodrugs was studied in a representative cervical cancer cell line. Interestingly, our results revealed that the development of the prodrugs can significantly enhance the anticancer potential of EPA. Finally, the drug uncaging process from the prodrugs by the intracellular esterases was studied in the cellular medium by measuring the turn-on fluorescence using fluorescence microscopy. Therefore, the present study highlights the rational development of the fluorogenic prodrugs of EPA, which will help enhance its anticancer potential with better therapeutic potential.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Misra R, Bhuyan HJ, Dutta A, Bhabak KP. Recent Developments On Activatable Turn-On Fluorogenic Donors of Hydrogen Sulfide (H 2S). ChemMedChem 2024; 19:e202400251. [PMID: 38746978 DOI: 10.1002/cmdc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO). Besides its role in physiological and pathophysiological conditions, the promising therapeutic potential of this small-molecule makes it advantageous for various pharmaceutical applications. The endogenous production of H2S at a lower concentration is crucial in maintaining redox balance and cellular homeostasis, and the dysregulation leads to various disease states. In the event of H2S deficiency, the exogenous donation of H2S could help maintain the optimal cellular concentration of H2S and cellular homeostasis. Over the last several years, researchers have developed numerous small-molecule non-fluorogenic organosulfur compounds as H2S donors and investigated their pharmacological potentials. However, reports on stimuli-responsive turn-on fluorogenic donors of H2S have appeared recently. Interestingly, the fluorogenic H2S donors offer additional advantages with the non-invasive real-time monitoring of the H2S release utilizing the simultaneous turn-on fluorogenic processes. The review summarizes the recent developments in turn-on fluorogenic donors of H2S and the potential biological applications that have developed over the years.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hirak Jyoti Bhuyan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amlan Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
5
|
Fosnacht KG, Dorogin J, Jefferis PM, Hettiaratchi MH, Pluth MD. An Expanded Palette of Fluorescent COS/H 2S-Releasing Donors for H 2S Delivery, Detection, and In Vivo Application. Angew Chem Int Ed Engl 2024; 63:e202402353. [PMID: 38578835 PMCID: PMC11147686 DOI: 10.1002/anie.202402353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Hydrogen sulfide (H2S) is an important reactive sulfur species that is involved in many biological functions, and H2S imbalances have been indicated as a potential biomarker for various diseases. Different H2S donors have been developed to deliver H2S directly to biological systems, but few reports include donors with optical responses that allow for tracking of H2S release. Moreover, donor systems that use the same chemistry to deliver H2S across a palette of fluorescent responses remain lacking. Here we report five thiol-activated fluorescence turn-on COS/H2S donors that utilize blue, yellow, orange, red, and near infrared-emitting dyes functionalized with an H2S-releasing sulfenyl thiocarbonate scaffold. Upon treatment with thiols, each donor provides a fluorescence turn-on response (3-310-fold) and high H2S release efficiencies (>60 %). Using combined electrode and fluorescence experiments, we directly correlate the measured H2S release with the fluorescence response. All donors are biocompatible and release H2S in live cell environments. In addition, we demonstrate that the NIR donor allows for imaging H2S release in live rats via subcutaneous injection of the donor loaded into an alginate gel, which to the best of our knowledge is the first in vivo tracking of H2S release from a fluorogenic donor in non-transparent organisms.
Collapse
Affiliation(s)
- Kaylin G Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Jonathan Dorogin
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Payton M Jefferis
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Marian H Hettiaratchi
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| |
Collapse
|
6
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
7
|
Sufian A, Badirujjaman M, Barman P, Bhabak KP. Dual-Stimuli-Activatable Hybrid Prodrug for the Self-Immolative Delivery of an Anticancer Agent and Hydrogen Sulfide with Turn-On Fluorescence. Chemistry 2023; 29:e202302197. [PMID: 37665099 DOI: 10.1002/chem.202302197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Stimuli-responsive fluorogenic prodrugs are advantageous for the targeted drug delivery enabling real-time non-invasive monitoring with turn-on fluorescence. We report herein the dual-stimuli (ROS and CA)-responsive thiocarbamate-based prodrug (AM-TCB) for the turn-on fluorogenic delivery of the naphthalimide-based anticancer agent amonafide along with the gasotransmitter hydrogen sulfide (H2 S). A carbamate-based prodrug AM-CB was also designed, capable of releasing the anticancer agent amonafide without any H2 S. The prodrugs were synthesized using multi-step organic synthesis. UV-Vis and fluorescence spectroscopic studies revealed selective reactivity of the boronate ester group of prodrugs towards ROS (primarily H2 O2 ) with the release of amonafide and COS/CO2 via self-immolative processes. Hydrolysis of the generated COS by carbonic anhydrase (CA) produces H2 S. While the prodrug AM-TCB retained the anticancer activity of free amonafide in cancer cells (MDA-MB-231 and HeLa), unlike amonafide, it enhanced the cellular viability of the non-malignant cells (HEK-293). Fluorescence imaging in HeLa cells revealed the simultaneous delivery of the anticancer agent and H2 S from AM-TCB with turn-on fluorescence. Western blot studies further revealed the cytoprotective effects of the released H2 S from AM-TCB. The present adjuvant strategy therefore would be helpful in future for ameliorating the anticancer drug-induced side-effects.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
8
|
Bhattacherjee D, Raina K, Mandal TK, Thummer RP, Bhabak KP. Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free Radic Biol Med 2022; 191:82-96. [PMID: 36038037 DOI: 10.1016/j.freeradbiomed.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The potent anti-cancer activity of naturally occurring organopolysulfides has attracted wide research attention over the last two decades. Sustained donation of hydrogen sulfide (H2S) from organopolysulfides is found to be beneficial for the treatment of several organ-specific cancers. In the present study, for the first time, the mechanism of action for the potent anti-cancer activity of bis(3,5-dimethoxybenzyl) trisulfide 4 against highly aggressive triple-negative breast cancer cells (MDA-MB-231) is described. Preliminary in vitro studies revealed potent anti-proliferative activity of the trisulfide 4 against triple-negative breast cancer cells with an IC50 value of 1.0 μM. Mechanistic studies reveal that the compound exhibited anti-cancer activity, primarily by targeting and suppressing the Wnt/β-catenin signaling pathway. The inactivation of the β-catenin level was associated with the cell cycle arrest in the G2/M phase and the significant down-regulation of downstream signaling genes such as Cyclin D1 and c-Myc expression. Several control experiments with analogous organosulfur compounds and the key enzyme inhibitors reveal that the presence of a trisulfide unit in the compound is crucial for the desired inactivation of β-catenin expression, which is promoted by GSK-3β-induced phosphorylation of β-catenin and its proteasomal degradation. Moreover, the trisulfide unit or the released H2S induced down-regulation of the p53 expression with the possible S-sulfhydration process led to p53-independent up-regulation of p21 expression. Therefore, the key results of this study highlighting the potency of synthetic benzylic organotrisulfide and the released H2S towards the growth inhibition of triple-negative breast cancer via Wnt/β-catenin signaling pathway would certainly be helpful for further studies and developing small-molecule anti-cancer therapeutics in future.
Collapse
Affiliation(s)
- Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Tapas K Mandal
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajkumar P Thummer
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
9
|
Sufian A, Bhattacherjee D, Barman P, Srivastava A, Thummer RP, Bhabak KP. Stimuli-responsive prodrug of non-steroidal anti-inflammatory drug diclofenac: self-immolative drug release with turn-on near-infrared fluorescence. Chem Commun (Camb) 2022; 58:7833-7836. [PMID: 35748501 DOI: 10.1039/d2cc02132c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS)-responsive near infrared (NIR) fluorogenic prodrug DCI-ROS is developed for the self-immolative release of diclofenac (DCF) with turn-on fluorescence. The non-toxic prodrug exhibited turn-on red fluorescence with endogenous ROS in cancer cells and inhibited COX-2 expression in the inflammation-induced macrophage cells. The prodrug strategy thus would be helpful for the controlled fluorogenic delivery of DCF for inflammatory diseases.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Abhay Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|