1
|
Botticelli G, Falisi G, Rastelli S, Iacomino E, Bruni A, Gerardi D, Di Fabio G, Severino M, Bernardi S. A Morphological Evaluation of the Antibiofilm Activity on an Implant Surface Using a New Electric Device: An In Vitro Study. Dent J (Basel) 2025; 13:140. [PMID: 40277470 PMCID: PMC12026443 DOI: 10.3390/dj13040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Peri-implantitis, the most prevalent cause of implant failure, is a multifaceted issue that is influenced by various factors that promote biofilm formation around the implant. Although various innovative methods for microbiological decontamination of dental implants exist, a universally accepted standard protocol has not yet been established. However, the potential of a device that generates an electric current (Ximplant®) in reducing the survival of microorganisms within the biofilm is a promising development. Methods: In this in vitro study, five dental implants, contaminated using a microbial culture from a sample of saliva of a patient suffering from peri-implantitis, were decontaminated using the Ximplant® peri-implantitis protocol. The experimental conditions included a simulated peri-implant site and a subsequent fluorescent assessment of the Live/Dead microbial population. Results: The qualitative and quantitative image analyses showed a predominant dead light signal on the treated sample, demonstrating the potential efficacy of applying the electrostatic field to the contaminated implant surface in reducing the viability of the microorganisms within the biofilm around dental implants. Conclusions: These findings could inspire a new era in peri-implantitis treatment.
Collapse
Affiliation(s)
- Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Sofia Rastelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Enzo Iacomino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Giuseppe Di Fabio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| | - Marco Severino
- Department of Medicine, School of Medicine, Odontostomatological University Centre, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy;
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.B.); (G.F.); (S.R.); (E.I.); (G.D.F.)
| |
Collapse
|
2
|
Mahdizade Ari M, Scholz KJ, Cieplik F, Al-Ahmad A. Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy. Front Cell Infect Microbiol 2025; 15:1533768. [PMID: 40171166 PMCID: PMC11959090 DOI: 10.3389/fcimb.2025.1533768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The viable but non-cultivable (VBNC) state and persister cells, two dormancy phenomena in bacteria, differ in various aspects. The entry of bacteria into the VBNC state as a survival strategy under stressful conditions has gained increasing attention in recent years, largely due to the higher tolerance of VBNC cells to antibiotics and antimicrobials resulting from their low metabolic activity. The oral cavity favors biofilm growth in dental hard tissues, resulting in tooth decay and periodontitis. Despite advances in VBNC state detection in the food industry and environment, the entry capability of oral bacteria into the VBNC state remains poorly documented. Furthermore, the VBNC state has recently been observed in oral pathogens, including Porphyromonas gingivalis, which shows potential relevance in chronic systemic infections, Enterococcus faecalis, an important taxon in endodontic infections, and Helicobacter pylori, which exhibits transient presence in the oral cavity. Further research could create opportunities to develop novel therapeutic strategies to control oral pathogens. The inability of conventional culture-based methods to identify VBNC bacteria and the metabolic reactivation of dormant cells to restore susceptibility to therapies highlights a notable gap in anti-VBNC state strategies. The lack of targeted approaches tested for efficacy against VBNC bacteria underscores the need to develop novel detection methods. This review discusses the VBNC state, its importance in public health, and diagnostic techniques, with a special focus on the VBNC state in oral bacteria.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Konstantin Johannes Scholz
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Servain-Viel S, Aknin ML, Domenichini S, Perlemuter G, Cassard AM, Schlecht-Louf G, Moal VLL. A flow cytometry method for safe detection of bacterial viability. Cytometry A 2024; 105:146-156. [PMID: 37786349 DOI: 10.1002/cyto.a.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Flow cytometry is a relevant tool to meet the requirements of academic and industrial research projects aimed at estimating the features of a bacterial population (e.g., quantity, viability, activity). One of the remaining challenges is now the safe assessment of bacterial viability while minimizing the risks inherent to existing protocols. In our core facility at the Paris-Saclay University, we have addressed this issue with two objectives: measuring bacterial viability in biological samples and preventing bacterial contamination and chemical exposure of the staff and cytometers used on the platform. Here, we report the development of a protocol achieving these two objectives, including a viability labeling step before bacteria fixation, which removes the risk of biological exposure, and the decrease of the use of reagents such as propidium iodide (PI), which are dangerous for health (CMR: carcinogenic, mutagenic, and reprotoxic). For this purpose, we looked for a non-CMR viability dye that can irreversibly label dead bacteria before fixation procedures and maintain intense fluorescence after further staining. We decided to test on the bacteria, eFluor Fixable Viability dyes, which are usually used on eukaryotic cells. Since the bacteria had size and granularity characteristics very similar to those associated with flow cytometry background signals, a step of bacterial DNA labeling with SYTO or DRAQ5 was necessarily added to differentiate them from the background. Three marker combinations (viability-DNA) were tested on LSR Fortessa and validated on pure bacterial populations (Gram+ , Gram- ) and polybacterial cultures. Any of the three methods can be used and adapted to the needs of each project and allow users to adapt the combination according to the configuration of their cytometer. Having been tested on six bacterial populations, validated on two cytometers, and repeated at least two times in each evaluated condition, we consider this method reliable in the context of these conditions. The reliability of the results obtained in flow cytometry was successfully validated by applying this protocol to confocal microscopy, permeabilization, and also to follow cultures over time. This flow cytometry protocol for measuring bacterial viability under safer conditions also opens the prospect of its use for further bacterial characterization.
Collapse
Affiliation(s)
- S Servain-Viel
- Plateforme CYM - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - M-L Aknin
- Plateforme CYM - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - S Domenichini
- Plateforme MIPSIT - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - G Perlemuter
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
- Service d'Hépato-Gastroentérologie Et Nutrition, Hôpital Antoine-Béclère, AP- HP Université Paris-Saclay, Clamart, France
| | - A-M Cassard
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| | - G Schlecht-Louf
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| | - V Lievin-Le Moal
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| |
Collapse
|
4
|
Modi K, Modi K, Bhatt K, Patel N, Parikh J, Mohan B, Bajaj N, Vyas A, Kothari F. Illuminating Bacterial Contamination in Water Sources: The Power of Fluorescence-Based Methods. J Fluoresc 2024; 34:139-147. [PMID: 37310589 DOI: 10.1007/s10895-023-03297-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Bacterial contamination of water sources is a significant public health concern, and therefore, it is important to have accurate and efficient methods for monitoring bacterial concentration in water samples. Fluorescence-based methods, such as SYTO 9 and PI staining, have emerged as a promising approach for real-time bacterial quantification. In this review, we discuss the advantages of fluorescence-based methods over other bacterial quantification methods, including the plate count method and the most probable number (MPN) method. We also examine the utility of fluorescence arrays and linear regression models in improving the accuracy and reliability of fluorescence-based methods. Overall, fluorescence-based methods offer a faster, more sensitive, and more specific option for real-time bacterial quantification in water samples.
Collapse
Affiliation(s)
- Kinjal Modi
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Sciences, School of engineering, Indrashil university, Kadi, Mehsana, 382740, Gujarat, India.
| | - Keyur Bhatt
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India.
| | - Nihal Patel
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Namrata Bajaj
- Department of Humanity and Sciences, School of engineering, Indrashil university, Kadi, Mehsana, 382740, Gujarat, India
| | - Amish Vyas
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Flory Kothari
- Department of Biotechnology, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| |
Collapse
|
5
|
Ihadjadene Y, Walther T, Krujatz F. Optimized Protocol for Microalgae DNA Staining with SYTO9/SYBR Green I, Based on Flow Cytometry and RSM Methodology: Experimental Design, Impacts and Validation. Methods Protoc 2022; 5:76. [PMID: 36287048 PMCID: PMC9612149 DOI: 10.3390/mps5050076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple fluorochromes are extensively used to investigate different microalgal aspects, such as viability and physiology. Some of them can be used to stain nucleic acids (DNA). Well-known examples are SYBR Green I and SYTO 9, the latter of which offers several advantages, especially when combined with flow cytometry (FCM)—a powerful method for studying microalgal population heterogeneity and analyzing their cell cycles. However, the effects of these dyes on the microalgae cell physiology have not been fully elucidated yet. A statistical experimental design, using response surface methodology (RSM) with FCM was applied in this study to optimize the DNA staining of a non-conventional microalgae, Chromochloris zofingiensis, with SYBR Green I and SYTO 9, and to optimize the variables affecting staining efficiency, i.e., the dye concentration, incubation time and staining temperature. We found that none of these factors affects the staining efficiency, which was not less than 99.65%. However, for both dyes, the dye concentration was shown to be the most significant factor causing cell damage (p-values: 0.0003; <0.0001) for SYBR Green I and SYTO 9, respectively. The staining temperature was only significant for SYTO 9 (p-value: 0.0082), and no significant effect was observed regarding the incubation time for both dyes. The values of the optimized parameters (0.5 µM, 05 min and 25 °C) for SYTO 9 and (0.5 X, 5 min and 25 °C) for SYBR Green I resulted in the maximum staining efficiency (99.8%; 99.6%), and the minimum damaging effects (12.86%; 13.75%) for SYTO 9 and SYBR Green I, respectively. These results offer new perspectives for improving the use of DNA staining fluorochromes and provides insights into their possible side effects on microalgae.
Collapse
Affiliation(s)
- Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
| |
Collapse
|
6
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
7
|
Ajmal M, Wei JW, Zhao Y, Liu YH, Wu PP, Li YQ. Derivative Matrix-Isopotential Synchronous Spectrofluorimetry and Hantzsch Reaction: A Direct Route to Simultaneous Determination of Urinary δ-Aminolevulinic Acid and Porphobilinogen. Front Chem 2022; 10:920468. [PMID: 35711951 PMCID: PMC9194443 DOI: 10.3389/fchem.2022.920468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Early and sensitive detection of δ-aminolevulinic acid (δ-ALA) and porphobilinogen (PBG) is the cornerstone of diagnosis and effective treatment for acute porphyria. However, at present, the quantifying strategies demand multiple solvent extraction steps or chromatographic approaches to separate δ-ALA and PBG prior to quantification. These methods are both time-consuming and laborious. Otherwise, in conventional spectrofluorimetry, the overlapping spectra of the two analytes cause false diagnosis. To overcome this challenge, we present a two-step approach based on derivative matrix-isopotential synchronous fluorescence spectrometry (DMISFS) and the Hantzsch reaction, realizing the simple and simultaneous detection of δ-ALA and PBG in urine samples. The first step is chemical derivatization of the analytes by Hantzsch reaction. The second step is the determination of the target analytes by combining MISFS and the first derivative technique. The proposed approach accomplishes following advantages: 1) The MISFS technique improves the spectral resolution and resolves severe spectral overlap of the analytes, alleviating tedious and complicated pre-separation processes; 2) First derivative technique removes the background interference of δ-ALA on PBG and vice versa, ensuring high sensitivity; 3) Both the analytes can be determined simultaneously via single scanning, enabling rapid detection. The obtained detection limits for δ-ALA and PBG were 0.04 μmol L-1 and 0.3 μmol L-1, respectively. Within-run precisions (intra and inter-day CVs) for both the analytes were <5%. Further, this study would serve to enhance the availability of early and reliable quantitative diagnosis for acute porphyria in both scientific and clinical laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Wang M, Ateia M, Hatano Y, Yoshimura C. Regrowth of Escherichia coli in environmental waters after chlorine disinfection: shifts in viability and culturability. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:1521-1534. [PMID: 37534127 PMCID: PMC10394862 DOI: 10.1039/d1ew00945a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bacterial regrowth after water/wastewater disinfection poses severe risks to public health. However, regrowth studies under realistic water conditions that might critically affect bacterial regrowth are scarce. This study aimed to assess for the first time the regrowth of Escherichia coli (E. coli) in terms of its viability and culturability in environmental waters after chlorine disinfection, which is the most widely used disinfection method. Post-chlorination regrowth tests were conducted in 1) standard 0.85% NaCl solution, 2) river water receiving domestic wastewater effluents, and 3) river water that is fully recharged by domestic wastewater effluents. The multiplex detection of plate count and fluorescence-based viability test was adopted to quantify the culturable and viable E. coli to monitor the regrowth process. The results confirmed that chlorine treatment (0.2, 0.5 and 1.0 mg L-1 initial free chlorine) induced more than 99.95% of E. coli to enter a viable but non-culturable (VBNC) state and the reactivation of VBNC E. coli is presumably the major process of the regrowth. A second-order regrowth model well described the temporal shift of the survival ratio of culturable E. coli after the chlorination (R2: 0.73-1.00). The model application also revealed that the increase in initial chlorine concentration and chlorine dose limited the maximum regrowth rate and the maximum survival ratio, and the regrowth rate and percentage also changed with the water type. This study gives a better understanding of the potential regrowth after chlorine disinfection and highlights the need for investigating the detailed relation of the regrowth to environmental conditions such as major components of water matrices.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|