1
|
Mitchell RJ, Havrylyuk D, Hachey AC, Heidary DK, Glazer EC. Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism. Chem Sci 2025; 16:721-734. [PMID: 39629492 PMCID: PMC11609979 DOI: 10.1039/d4sc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Energy is essential for all life, and mammalian cells generate and store energy in the form of ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. These processes can now be evaluated by extracellular flux analysis (EFA), which has proven to be an indispensable tool in cell biology, providing previously inaccessible information regarding the bioenergetic landscape of cell lines, complex tissues, and in vivo models. Recently, EFA demonstrated its utility as a screening tool in drug development, both by providing insights into small molecule-organelle interactions, and by revealing the peripheral and potentially undesired off-target effects small molecules have within cells. Surprisingly, technologies to quantify cellular bioenergetics have not been systematically applied in phototherapy development, leaving open several questions about how the mechanism of action of a compound can impact essential cellular functions. Here, we utilized the Seahorse analyzer to address this question for photosensitizers (PSs) for photodynamic therapy (PDT) and contrast these systems to molecules that photo-release a ligand and thus act as photocages or photoactivated chemotherapeutics (PACT), intending to understand the influence these two classes of compounds have on cellular bioenergetics. EFA results show that acute treatment of A549 lung adenocarcinoma cells with PDT agents induces a quiescent bioenergetic response as a result of mitochondrial respiration shutdown. The loss of oxidative phosphorylation is followed by disruption of glycolysis, which occurs after an initial increase in glycolytic respiration is unable to compensate for the interruption of the electron transport chain (ETC). In contrast, the PACT agents tested had little impact on cellular respiration, and the minor inhibition of these metabolic processes was not related to the mechanism of action, as reflected by a lack of correlation with photoejection efficiency. Notably, a system capable of both generating 1O2 and photo-releasing a ligand exhibited the dominant profile of a PDT agent and induced the quiescent bioenergetic state, indicating potential implications on cellular bioenergetics for so-called dual-action agents. These findings are presented with the aim to provide the necessary groundwork for expanding the application and utility of EFA to phototherapeutics and to highlight the role of metabolic alterations in PDT.
Collapse
|
2
|
Mandal AA, Upadhyay A, Mandal A, Nayak M, K MS, Mukherjee S, Banerjee S. Visible-Light-Responsive Novel Ru(II)-Metallo-Antibiotics with Potential Antibiofilm and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28118-28133. [PMID: 38783713 DOI: 10.1021/acsami.4c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Growing challenges with antibiotic resistance pose immense challenges in combating microbial infections and biofilm prevention on medical devices. Lately, antibacterial photodynamic therapy (aPDT) is now emerging as an alternative therapy to overcome this problem. Herein, we synthesized and characterized four Ru(II)-complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(dpq)Cl]PF6 (Ru2), [Ru(ph-tpy)(dppz)Cl]PF6 (Ru3), and [Ru(ph-tpy)(dppn)Cl]PF6 (Ru4) (where 4'-phenyl-2,2':6',2″-terpyridine = ph-tpy; 2,2'-bipyridine = bpy; dipyrido[3,2-f:2',3'-h]quinoxaline = dpq; dipyrido[3,2-a:2',3'-c]phenazine = dppz; and Benzo[I]dipyrido[3,2-a:2',3'-c]phenazine = dppn), among which Ru2-Ru4 are novel. Octahedral geometry of the complexes with a RuN5Cl core was evident from the crystal structure of Ru2. Ru1-Ru4 showed an MLCT absorption band in the 450-600 nm region, useful for aPDT performances. Further, optimum triplet excited state energy and excellent photostability of Ru1-Ru4 made them good photosensitizers for aPDT. Ru1-Ru4 demonstrated enhanced antimicrobial activity on visible-light exposure (400-700 nm, 10 J cm-2), confirmed using different antibacterial assays. Mechanistic studies revealed that inhibition of bacterial growth was due to the generation of oxidative stress (via NADH oxidation and ROS generation) upon treatment with Ru2-Ru4, resulting in destruction of the bacterial wall. Ru2 performed best killing performance against both Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria when exposed to light. Ru2-Ru4, when coated on a polydimethylsiloxane (PDMS) disk, showed long-term reusability and durable antibiofilm properties. Molecular docking confirmed the efficient interaction of Ru2-Ru4 with FabH (regulates fatty acid biosynthesis of E. coli) and PgaB (gives structural stability and helps biofilm formation of E. coli), resulting in probable downregulation. In vivo studies with healthy Wistar rats confirmed the biocompatibility of Ru2. This study shows that these lead complexes (Ru2-Ru4) can be used as potent alternative antimicrobial agents in low concentrations toward bacterial eradication with photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Arif Ali Mandal
- Department of Chemistry, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Mohammad Sabeel K
- Department of Chemistry, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, IIT (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Mandal AA, Singh V, Saha S, Peters S, Sadhukhan T, Kushwaha R, Yadav AK, Mandal A, Upadhyay A, Bera A, Dutta A, Koch B, Banerjee S. Green Light-Triggered Photocatalytic Anticancer Activity of Terpyridine-Based Ru(II) Photocatalysts. Inorg Chem 2024; 63:7493-7503. [PMID: 38578920 DOI: 10.1021/acs.inorgchem.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 μM and 88, respectively, under white light irradiation and ca. 1.9 μM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 μM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.
Collapse
Affiliation(s)
- Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Silda Peters
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Tumpa Sadhukhan
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
O’Dowd PD, Guerrero AS, Alley KR, Pigg HC, O’Neill F, Meiller J, Hobbs C, Rodrigues DA, Twamley B, O’Sullivan F, DeRose VJ, Griffith DM. Click-Capable Phenanthriplatin Derivatives as Tools to Study Pt(II)-Induced Nucleolar Stress. ACS Chem Biol 2024; 19:875-885. [PMID: 38483263 PMCID: PMC11040607 DOI: 10.1021/acschembio.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/20/2024]
Abstract
It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.
Collapse
Affiliation(s)
- Paul D. O’Dowd
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
- SSPC, The Science Foundation Ireland Research
Centre for
Pharmaceuticals, Limerick V94 T9PX, Ireland
| | - Andres S. Guerrero
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Katelyn R. Alley
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Hannah C. Pigg
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Fiona O’Neill
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Justine Meiller
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Chloe Hobbs
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
| | - Daniel A. Rodrigues
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
| | - Brendan Twamley
- Department
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Finbarr O’Sullivan
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Victoria J. DeRose
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Darren M. Griffith
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
- SSPC, The Science Foundation Ireland Research
Centre for
Pharmaceuticals, Limerick V94 T9PX, Ireland
| |
Collapse
|
5
|
Guerrero AS, O'Dowd PD, Pigg HC, Alley KR, Griffith DM, DeRose VJ. Comparison of click-capable oxaliplatin and cisplatin derivatives to better understand Pt(ii)-induced nucleolar stress. RSC Chem Biol 2023; 4:785-793. [PMID: 37799581 PMCID: PMC10549245 DOI: 10.1039/d3cb00055a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
Pt(ii) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(ii) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(ii)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(ii) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a click-capable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and γH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide-alkyne cycloaddition and may help to better understand Pt(ii)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(ii) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress.
Collapse
Affiliation(s)
- Andres S Guerrero
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Paul D O'Dowd
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Darren M Griffith
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|