1
|
Paik J, Choe JH, Padmanaban S, Seo M, Yoo CJ, Lee HB, Lee Y. Thermodynamic Hydricity of a Ruthenium CO 2 Hydrogenation Catalyst Supported by a Rigid PNP Pincer. JACS AU 2025; 5:811-821. [PMID: 40017766 PMCID: PMC11862944 DOI: 10.1021/jacsau.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
Ruthenium hydride complexes supported by pincer ligands play a crucial role in the catalytic hydrogenation of CO2 to reduced C1 chemicals such as formic acid and methanol. Toward a better understanding of their hydride transfer reactivity, knowledge of the underlying thermodynamic hydricity values is deemed critical, but relevant studies remain rare. Herein, we report the experimental thermodynamic hydricity of a new ruthenium CO2 hydrogenation catalyst (acriPNP)RuH(CO)(PPh3) (1) supported by a rigid, acridane-based PNP pincer ligand. We provide the synthesis, structure, and spectroscopic characterization of reaction intermediates involved in formate generation including the anionic dihydride (2), formate (3), five-coordinate purple species (4), and H2-bound species (5). Notably, the effective hydricity of complexes 1 and 2 in THF was determined by the H2 heterolysis method, revealing values of >52 and 32 kcal/mol, respectively. The corresponding hydricity values of 45-48 kcal/mol for related Ru dihydride complexes supported by neutral PNP pincer ligands highlight the effect of anionic complex charge in promoting stronger hydride donors. CO2 insertion into the Ru-H bond of the dihydride complex proceeds effectively under ambient conditions, suggesting that base-promoted H2 heterolysis is the rate-limiting step. Using 1 as a precatalyst, turnover frequencies in the order of 300 h-1 were obtained for formate generation. Broadly, our results provide valuable benchmark thermochemical data for the design of improved CO2 hydrogenation catalysts.
Collapse
Affiliation(s)
- Juwon Paik
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hyeak Choe
- Clean
Energy Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
| | - Sudakar Padmanaban
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Misook Seo
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun-Jae Yoo
- Clean
Energy Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Heui Beom Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Gonzalez AG, Gonzalez F, De Leon E, Birkhoff KM, Yruegas S, Chen H, Shoshani MM. Synthesis and characterization of NiAl-hydride heterometallics: perturbing electron density within Al-H-Ni subunits. Dalton Trans 2024. [PMID: 39189397 DOI: 10.1039/d4dt01786b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Heterometallic hydride complexes are of growing interest due to their potential to contribute to highly active insertion-based catalysis; however, methods to modulate electron density within this class of molecules are underexplored. Addition of ancillary ligands to heterotrimetallic NiAl2H2 species (1) results in the formation of heterobimetallic NiAl-hydride complexes with varying phosphine donors (2-(L)2). Incorporation of sigma donating ancillary ligands of increasing strength led to contractions of the Ni-Al distances correlated to a strengthening of a back donation interaction to the Al-H sigma antibonding orbital, most prominently present in 2-(PMe3)2. Demethylation of the aryl ether from 2-(PMe3)2 provides access to a novel anionic nickel-aluminum complex (3) with a maintained bridged hydride moiety between Ni and Al. Increased negative charge in complex 3 results in an elongation of the Ni-Al interaction. Combined crystallographic, spectroscopic, and computational studies support a 3-center interaction within the Al-H-Ni subunits and were used to map the degree of Ni-H character of the series within the Al-H-Ni bonding continuum.
Collapse
Affiliation(s)
- Aleida G Gonzalez
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Fernando Gonzalez
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Edgardo De Leon
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | | | - Sam Yruegas
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Haoyuan Chen
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Manar M Shoshani
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA.
| |
Collapse
|
3
|
Kameo H, Miyazaki T, Shimoyama Y, Asada A, Izumi D, Matsuzaka H, Bourissou D. Trigonal-Bipyramidal Pt(0) and Pd(0) Anions. Inorg Chem 2024; 63:13186-13190. [PMID: 38976600 DOI: 10.1021/acs.inorgchem.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Anionic Pt(0) and Pd(0) complexes with unprecedented trigonal-bipyramidal geometry have been prepared and thoroughly characterized by experimental and computational means. Coordination of a σ-acceptor borane moiety supported by three phosphine buttresses enhances the electrophilicity of M(0) and triggers the binding of soft anions (X = Br, I, CN).
Collapse
Affiliation(s)
- Hajime Kameo
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Tokoro Miyazaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki 305-8565 Japan
| | - Ayaka Asada
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Daisuke Izumi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Hiroyuki Matsuzaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, CNRS, Université Toulouse III Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|
4
|
Sansores-Paredes MLG, Lutz M, Moret ME. Cooperative H 2 activation at a nickel(0)-olefin centre. Nat Chem 2024; 16:417-425. [PMID: 38052947 DOI: 10.1038/s41557-023-01380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M-H bonds are generated either by oxidative addition of H2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M-H2) intermediate. Here we provide evidence for an alternative H2-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H2 molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni-H2 complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H2. The usefulness of this cooperative H2-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H2 activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (E)-(Z) isomerization and catalyst degradation by self-hydrogenation.
Collapse
Affiliation(s)
- María L G Sansores-Paredes
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
6
|
Ansmann N, Münch J, Schorpp M, Greb L. Neutral and Anionic Square Planar Palladium(0) Complexes Stabilized by a Silicon Z-Type Ligand. Angew Chem Int Ed Engl 2023; 62:e202313636. [PMID: 37899304 DOI: 10.1002/anie.202313636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Anionic [Pd(0)-X]- ate complex were proposed as key intermediates in Pd-catalyzed cross-coupling for decades, but their isolation remained elusive. Herein, a chelating Lewis acidic bis(amidophenolato)silane is introduced as a strong Z-type ligand which enables the characterization of the first anionic [Pd(0)-X]- ate complex. Intriguingly, these compounds and the neutral L-Pd(0) analogs exhibit a square planar coordination that is highly unusual for a d10 metal. Theoretical methods scrutinize the interaction between the Lewis acidic Si(IV) center and the late transition metal, while reactivity studies shed light on the potential role of anionic additives in oxidative addition reactions.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Joshua Münch
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcel Schorpp
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Schlenker K, Casselman LK, VanderLinden RT, Saouma CT. Large changes in hydricity as a function of charge and not metal in (PNP)M–H (de)hydrogenation catalysts that undergo metal–ligand cooperativity. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligand pKa and metal hydricity scale with one another in (de)hydrogenation catalysts that undergo metal–ligand cooperativity, irrespective of metal or ligand identity. Anionic hydrides are significantly more hydridic than their neutral counterparts.
Collapse
Affiliation(s)
- Kevin Schlenker
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Lillee K. Casselman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Caroline T. Saouma
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|