1
|
Zhang X, Bian H, Meng X, Yuan J, Ding J, Li W, Xu J, Guo B. Synthesis of Poly(butylene adipate- co-terephthalate) with Branched Monomer for Biodegradable Copolyesters with Enhanced Processability and Rheological Properties. ACS OMEGA 2025; 10:14258-14270. [PMID: 40256559 PMCID: PMC12004134 DOI: 10.1021/acsomega.5c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is one of the most promising biodegradable copolyesters for addressing "white pollution" and has made significant progress in industrial production, particularly in packaging and mulching film applications. However, melt elasticity and the rapid biodegradation rate of linear PBAT limit the broader application. In this study, a series of novel PBAT copolyesters with a low content of branch units (1.3-1.6%) were synthesized from adipic acid (AA), terephthalic acid (PTA), 1,4-butanediol (1,4-BDO), and branching monomers with fixed side chain length through esterification and polycondensation. A comprehensive investigation into the macromolecular structure of branched PBAT was conducted. A "Memoryless Random Model" combined with 1H-NMR analysis was used to calculate the number-average sequence length, which proved the existence of random block sequences. Both linear and branched PBAT copolymers exhibited relatively high and similar molecular weights of 6.3 × 104 Da and above. The conformational parameters g and B 3w were determined by gel permeation chromatography (GPC) coupled with triple detectors, thereby providing a clear definition of the branching characteristic. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses revealed two crystalline forms in PBAT, with the β-form predominating in linear PBAT and a decrease in crystallinity in branched PBAT. The enzymatic hydrolysis experiment showed that the branched side chain reduced the hydrolysis rate, and the existence of consecutive sequences (≥3) was proved by LC-MS. The copolymers demonstrated higher complex viscosity and tanδ at the same frequency, indicating enhanced melt viscosity and elastic response. The deviation of the end slope in the Han curve also proved the existence of BA-BT random block sequence and complex relaxation behavior.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongli Bian
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangze Meng
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Yuan
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianping Ding
- Xinjiang
Blue Ridge Tunhe Sci. & Tech. Co., Ltd. Changji 831199, Xinjiang, China
| | - Wanli Li
- Xinjiang
Blue Ridge Tunhe Sci. & Tech. Co., Ltd. Changji 831199, Xinjiang, China
| | - Jun Xu
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baohua Guo
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Kazaz S, Tripathi J, Tian Y, Turumtay H, Chin D, Pamukçu İ, Nimavat M, Turumtay EA, Baidoo EEK, Scown CD, Eudes A. In planta production of the nylon precursor beta-ketoadipate. J Biotechnol 2025; 404:102-111. [PMID: 40228630 DOI: 10.1016/j.jbiotec.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Beta-ketoadipate (βKA) is an intermediate of the βKA pathway involved in the degradation of aromatic compounds in several bacteria and fungi. Beta-ketoadipate also represents a promising chemical for the manufacturing of performance-advantaged nylons. We established a strategy for the in planta synthesis of βKA via manipulation of the shikimate pathway and the expression of bacterial enzymes from the βKA pathway. Using Nicotiana benthamiana as a transient expression system, we demonstrated the efficient conversion of protocatechuate (PCA) to βKA when plastid-targeted bacterial-derived PCA 3,4-dioxygenase (PcaHG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB) were co-expressed with 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB). This metabolic pathway was reconstituted in Arabidopsis by introducing a construct (pAtβKA) with stacked pcaG, pcaH, and pcaB genes into a PCA-overproducing genetic background that expresses AroG and QsuB (referred as QsuB-2). The resulting QsuB-2 x pAtβKA stable lines displayed βKA titers as high as 0.25 % on a dry weight basis in stems, along with a drastic reduction in lignin content and improvement of biomass saccharification efficiency compared to wild-type controls, and without any significant reduction in biomass yields. Using biomass sorghum as a potential crop for large-scale βKA production, techno-economic analysis indicated that βKA accumulated at titers of 0.25 % and 4 % on a dry weight basis could be competitively priced in the range of $2.04-34.49/kg and $0.47-2.12/kg, respectively, depending on the selling price of the residual biomass recovered after βKA extraction. This study lays the foundation for a more environmentally-friendly synthesis of βKA using plants as production hosts.
Collapse
Affiliation(s)
- Sami Kazaz
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jaya Tripathi
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yang Tian
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Halbay Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dylan Chin
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Rausser College of Natural Resources, University of California-Berkeley, Berkeley, CA 94720, USA
| | - İrem Pamukçu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Monikaben Nimavat
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Emine Akyuz Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corinne D Scown
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Energy & Biosciences Institute, University of California-Berkeley, Berkeley, CA 94720, USA; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Malashin I, Martysyuk D, Tynchenko V, Gantimurov A, Semikolenov A, Nelyub V, Borodulin A. Machine Learning-Based Process Optimization in Biopolymer Manufacturing: A Review. Polymers (Basel) 2024; 16:3368. [PMID: 39684112 DOI: 10.3390/polym16233368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The integration of machine learning (ML) into material manufacturing has driven advancements in optimizing biopolymer production processes. ML techniques, applied across various stages of biopolymer production, enable the analysis of complex data generated throughout production, identifying patterns and insights not easily observed through traditional methods. As sustainable alternatives to petrochemical-based plastics, biopolymers present unique challenges due to their reliance on variable bio-based feedstocks and complex processing conditions. This review systematically summarizes the current applications of ML techniques in biopolymer production, aiming to provide a comprehensive reference for future research while highlighting the potential of ML to enhance efficiency, reduce costs, and improve product quality. This review also shows the role of ML algorithms, including supervised, unsupervised, and deep learning algorithms, in optimizing biopolymer manufacturing processes.
Collapse
Affiliation(s)
- Ivan Malashin
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | | | - Vadim Tynchenko
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | | | | | - Vladimir Nelyub
- Bauman Moscow State Technical University, 105005 Moscow, Russia
- Far Eastern Federal University, 690922 Vladivostok, Russia
| | | |
Collapse
|
4
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
5
|
Zhu C, Wang K, Gao F, Sun Z, Chen M, Fei J, Chen C, He H, Liu Y, Cao Y. Hybrid homogeneous/heterogeneous relay catalysis for efficient synthesis of 5-aminomethyl-2-furancarboxylic acid from HMF. Chem Commun (Camb) 2024; 60:7483-7486. [PMID: 38939946 DOI: 10.1039/d4cc02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Here we present a hybrid catalytic pathway for efficient synthesis of 5-aminomethyl-2-furancarboxylic acid (AMFC), a bio-based nylon-6 analogue monomer, from 5-hydroxymethylfurfural (HMF). This method combines homogeneous-catalyzed selective oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) with heterogeneous-catalyzed reductive amination using ammonia as the nitrogen source. Through this relay strategy, we achieve significant enhancements in overall efficiency, resulting in isolation yields of up to 92% for highly selective and scalable AMFC production from HMF.
Collapse
Affiliation(s)
- Conglin Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Kaizhi Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Feifan Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Zehui Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Mugeng Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Jiachen Fei
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Chen Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Heyong He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yongmei Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
7
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
8
|
Corona-García C, Onchi A, Santiago AA, Soto TE, Vásquez-García SR, Pacheco-Catalán DE, Vargas J. Synthesis, Characterization, and Proton Conductivity of Muconic Acid-Based Polyamides Bearing Sulfonated Moieties. Polymers (Basel) 2023; 15:4499. [PMID: 38231907 PMCID: PMC10707785 DOI: 10.3390/polym15234499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Most commercially available polymers are synthesized from compounds derived from petroleum, a finite resource. Because of this, there is a growing interest in the synthesis of new polymeric materials using renewable monomers. Following this concept, this work reports on the use of muconic acid as a renewable source for the development of new polyamides that can be used as proton-exchange membranes. Muconic acid was used as a comonomer in polycondensation reactions with 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline, 2,5-diaminobencensulfonic acid, and 4,4'-diamino-2,2'-stilbenedisulfonic acid as comonomers in the synthesis of two new series of partially renewable aromatic-aliphatic polyamides, in which the degree of sulfonation was varied. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F-NMR) techniques were used to confirm the chemical structures of the new polyamides. It was also observed that the degree of sulfonation was proportional to the molar ratio of the diamines in the feed. Subsequently, membranes were prepared by casting, and a complete characterization was conducted to determine their decomposition temperature (Td), glass transition temperature (Tg), density (ρ), and other physical properties. In addition, water uptake (Wu), ion-exchange capacity (IEC), and proton conductivity (σp) were determined for these membranes. Electrochemical impedance spectroscopy (EIS) was used to determine the conductivity of the membranes. MUFASA34 exhibited a σp value equal to 9.89 mS·cm-1, being the highest conductivity of all the membranes synthesized in this study.
Collapse
Affiliation(s)
- Carlos Corona-García
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (C.C.-G.); (A.O.)
| | - Alejandro Onchi
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (C.C.-G.); (A.O.)
| | - Arlette A. Santiago
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico;
| | - Tania E. Soto
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Salomón Ramiro Vásquez-García
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, General Francisco J. Múgica s/n, Morelia C.P. 58060, Michoacán, Mexico;
| | - Daniella Esperanza Pacheco-Catalán
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C. Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, Mérida C.P. 97302, Yucatán, Mexico;
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (C.C.-G.); (A.O.)
| |
Collapse
|
9
|
Al-Shawabkeh AF. Thermodynamic characteristics of the aliphatic polyamide crystal structures: Enhancement of nylon 66α, 610α and 77γ polymers. Heliyon 2023; 9:e21042. [PMID: 37916125 PMCID: PMC10616352 DOI: 10.1016/j.heliyon.2023.e21042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Despite the polymer industry's reliance on nylon polymers, numerous questions remain about their crystal structures, modeling, and other features. This work discusses the thermodynamic properties and molecular modeling of a polyamides nylon 66α, 610α, and 77γ crystal structure systems for use in various electronics and Nano-devices that feature distinct properties such as exceptional optoelectronic properties at a low cost compared to other structures. This study looked at the crystal structure of a linear polyamide chain made up of repeating units. The influence of the thermal expansion coefficient and thermodynamic parameters on crystal structures' characteristics at different temperatures has previously been explored. The findings of this study demonstrate, on the one hand, the influence of the amorphous phase on the final thermodynamic characteristics of semi-crystalline polymers and, on the other hand, pave the way for greater improvement in the durability of these polymers by increasing their crystalline features. The values of the thermodynamic parameters for nylon 66α, 610α and 77γ such as enthalpy (ΔHExp.) were 35.08, 40.25, and 1.44 kJ/mol, entropy (ΔSExp.) 113.75, 128.84, and 15.10 J/mol-K, free energy (ΔGExp.) was -44.57, -46.62, and -6.86 kJ/mol, respectively. When the nylon data is compared, the nylon 610α exhibits a significantly higher free energy, at high temperatures, the process is spontaneous and exergonic, making it a potentially viable material for use as fibers and engineering thermoplastics.
Collapse
Affiliation(s)
- Ali F. Al-Shawabkeh
- Department of Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134 Jordan
| |
Collapse
|
10
|
Beyazay T, Martin WF, Tüysüz H. Direct Synthesis of Formamide from CO 2 and H 2O with Nickel-Iron Nitride Heterostructures under Mild Hydrothermal Conditions. J Am Chem Soc 2023; 145:19768-19779. [PMID: 37642297 PMCID: PMC7615090 DOI: 10.1021/jacs.3c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Formamide can serve as a key building block for the synthesis of organic molecules relevant to premetabolic processes. Natural pathways for its synthesis from CO2 under early earth conditions are lacking. Here, we report the thermocatalytic conversion of CO2 and H2O to formate and formamide over Ni-Fe nitride heterostructures in the absence of synthetic H2 and N2 under mild hydrothermal conditions. While water molecules act as both a solvent and hydrogen source, metal nitrides serve as nitrogen sources to produce formamide in the temperature range of 25-100 °C under 5-50 bar. Longer reaction times promote the C-C bond coupling and formation of acetate and acetamide as additional products. Besides liquid products, methane and ethane are also produced as gas-phase products. Postreaction characterization of Ni-Fe nitride particles reveals structural alteration and provides insights into the potential reaction mechanism. The findings indicate that gaseous CO2 can serve as a carbon source for the formation of C-N bonds in formamide and acetamide over the Ni-Fe nitride heterostructure under simulated hydrothermal vent conditions.
Collapse
Affiliation(s)
- Tuğçe Beyazay
- Max-Planck-Institut fur Kohlenforschung, 45470 Mulheim an der Ruhr, Germany
| | - William F. Martin
- Institute of Molecular Evolution, University of Dusseldorf, 40225 Dusseldorf, Germany
| | - Harun Tüysüz
- Max-Planck-Institut fur Kohlenforschung, 45470 Mulheim an der Ruhr, Germany
| |
Collapse
|
11
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
12
|
An R, Liu C, Wang J, Jia P. Wood-Derived Polymers from Olefin-Functionalized Lignin and Ethyl Cellulose via Thiol-Ene Click Chemistry. Polymers (Basel) 2023; 15:polym15081923. [PMID: 37112070 PMCID: PMC10140994 DOI: 10.3390/polym15081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lignin and cellulose derivatives have vast potential to be applied in polymer materials. The preparation of cellulose and lignin derivatives through esterification modification is an important method to endow cellulose and lignin with good reactivity, processability and functionality. In this study, ethyl cellulose and lignin are modified via esterification to prepare olefin-functionalized ethyl cellulose and lignin, which are further used to prepare cellulose and lignin cross-linker polymers via thiol-ene click chemistry. The results show that the olefin group concentration in olefin-functionalized ethyl cellulose and lignin reached 2.8096 mmol/g and 3.7000 mmol/g. The tensile stress at break of the cellulose cross-linked polymers reached 23.59 MPa. The gradual enhancement in mechanical properties is positively correlated with the olefin group concentration. The existence of ester groups in the cross-linked polymers and degradation products makes them more thermally stable. In addition, the microstructure and pyrolysis gas composition are also investigated in this paper. This research is of vast significance to the chemical modification and practical application of lignin and cellulose.
Collapse
Affiliation(s)
- Rongrong An
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chengguo Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|