1
|
Truhlar DG, Li X. Introduction to Relativistic Electronic Structure Calculations. J Phys Chem A 2025; 129:4301-4312. [PMID: 40305422 DOI: 10.1021/acs.jpca.5c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
It is important to include relativistic effects in electronic structure calculations for many important chemical problems, including heavy-element chemistry, intersystem crossing, and zero-field splitting. The subject is old, but recent developments have been rapid. The specialized literature can be daunting for nonspecialists, and this article is intended to provide an entry to that literature, especially for the modern treatment of molecules. There are only five equations. We include discussion of the relations between four-component, two-component, and one-component treatments, the distinction between scalar relativistic effects and angular-momentum-dependent effects, approximate treatments of spin-orbit coupling, including the molecular mean-field approximations, the inclusion of electron correlation in relativistic wave functions, and zero-field splitting.
Collapse
Affiliation(s)
- Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Zhang Y, Mo Z, Ye Z, Yan Q, Piao X, Jiang J, Xu B, Zhang K. Recent advances in dopant-matrix afterglow systems: high-performance organic afterglow materials and the critical role of organic matrices in materials fabrication. Phys Chem Chem Phys 2025; 27:9913-9936. [PMID: 40326467 DOI: 10.1039/d4cp04641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Organic afterglow materials have garnered significant attention due to their long-lived excited states, demonstrating promising applications across diverse fields. Over the past few decades, these materials have experienced rapid development, particularly dopant-matrix systems. This review focuses on the progress made in dopant-matrix organic afterglow materials over the past three years, emphasizing two key aspects: high-performance organic afterglow materials and the critical role of organic matrices in materials fabrication. In the first section, we summarize strategies for enhancing afterglow performance through molecular design, focusing on representative luminescent systems such as benzophenone derivatives, polycyclic aromatic hydrocarbons, and difluoroboron β-diketonate compounds. The second section explores the pivotal functions of organic matrices, including protecting triplet excited states, facilitating intersystem crossing, sensitizing triplet states, and promoting charge separation, which collectively contribute to novel functionalities of afterglow materials. Beyond the molecular design of luminophores, the selection of organic matrices is equally crucial for achieving high-performance afterglow materials and expanding their functionality. This review provides a comprehensive compilation of chemical structures for various organic matrices, serving as a valuable reference for researchers. Given the intricate photophysical processes in organic afterglow systems, we also present experimental methods that support or refute specific mechanisms, providing critical insights for future studies. Overall, dopant-matrix organic afterglow materials represent a highly promising class of luminescent materials. We anticipate their large-scale adoption and high-value applications in real-world scenarios in the near future.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Zhe Mo
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Zi Ye
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Qianqian Yan
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xixi Piao
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Jialiang Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Biao Xu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Zhu Y, Deng T, Du Y. Exploring and Anticipating the Applications of Organic Room-Temperature Phosphorescent Materials in Biomedicine and Dentistry. Int J Nanomedicine 2024; 19:13201-13216. [PMID: 39670197 PMCID: PMC11636246 DOI: 10.2147/ijn.s492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
As popular materials, organic room-temperature phosphorescent (RTP) materials have been studied and developed in many fields. RTP materials have the characteristics of a high signal-to-noise ratio (SNR) and high reactive oxygen species (ROS) quantum yield, which can achieve clear bioimaging and efficient ability of anti-tumor and antibacterial, and have received extensive attention from researchers for imaging, tumor therapy, and antibacterial treatment. Moreover, owing to their flexible molecular structures and various synthesis systems and methods, it may be possible to design and synthesize materials according to individual physiologic environments of patients in medical applications, making bioimaging more accurate and greatly improving tumor and bacterial killing rates. So they have great development potential in the medical field. On the basis of introducing the mechanism of RTP materials that emit phosphorescence and generate ROS, this review summarizes the medical applications of RTP materials from three aspects-bioimaging, tumor treatment and antibacterial treatment-to provide a basis for their application in the field of stomatology.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yeyuhan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
4
|
Fan J, Liu H, Wang Y, Xie Z, Lin Z, Pang K. Hydrostatic pressure effect on excited state properties of room temperature phosphorescence molecules: A QM/MM study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124626. [PMID: 38865890 DOI: 10.1016/j.saa.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Stimulus-responsive organic room temperature phosphorescence (RTP) materials exhibit variations in their luminescent characteristics (lifetime and efficiency) upon exposure to external stimuli, including force, heat, light and acid-base conditions, the development of stimulus-responsive RTP molecules becomes imperative. However, the inner responsive mechanism is unclear, theoretical investigations to reveal the relationship among hydrostatic pressures, molecular structures and photophysical properties are highly desired. Herein, taking the Se-containing RTP molecule (SeAN) as a model, based on the dispersion corrected density functional theory (DFT-D), the combined quantum mechanics and molecular dynamics (QM/MM) method and thermal vibration correlation function (TVCF) theory, the influences of hydrostatic pressure on molecular structures, transition properties as well as lifetimes and efficiencies of RTP molecule are theoretically studied. Results show that extended lifetime and enhanced efficiency are observed at 2 Gpa compared with molecule at normal pressure, and this is related with the small reorganization energy and large oscillator strength. Moreover, due to the small energy gap (0.34 eV) and remarkable spin-orbit coupling (SOC) constant (8.56 cm-1) between first singlet excited state and triplet state, fast intersystem crossing (ISC) process is determined for molecule at 6 Gpa. Furthermore, the intermolecular interactions are visualized using independent gradient model based on Hirshfeld partition (IGMH) and the changes of molecular packing modes, SOC values, lifetimes and efficiencies with pressures are detected. These results reveal the relationship between molecular structures and RTP properties. Our work provides theoretical insights into the hydrostatic pressure response mechanism and could promote the development new efficient stimulus-responsive molecules.
Collapse
Affiliation(s)
- Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yan Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zongwei Lin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Kunwei Pang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Zhu W, Wang L, Yang W, Chen Y, Liu Z, Li Y, Xue Y. Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials. J Fluoresc 2024; 34:2601-2612. [PMID: 37861967 DOI: 10.1007/s10895-023-03462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.
Collapse
Affiliation(s)
- Wenping Zhu
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| | - Like Wang
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| | - Weijie Yang
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| | - Yahong Chen
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| | - Zengchen Liu
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China.
| | - Yanxia Li
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| | - Yingying Xue
- College of Chemistry and Chemical Eningeering, Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, 466001, Zhoukou, P. R. China
| |
Collapse
|
6
|
Yang C, Zhu K, Yan B. Hydrogen-Bonded Organic Frameworks for Antibiotic Fluorescent Sensing Artificial Intelligence-Enhanced Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39353101 DOI: 10.1021/acsami.4c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The paramount importance of anticounterfeiting measures in safeguarding consumers from counterfeit products lies in their ability to ensure product safety and reliability. Advanced luminescent anticounterfeiting materials, particularly those responsive to multiple stimuli, afford a dynamic and multilayered security assurance. This study presents the synthesis of a novel material, Eu/Tb@GC-3, via postsynthetic modification, which exhibits notable photoluminescent properties with emission at 544 and 614 nm. The material demonstrates high selectivity and sensitivity in detecting Nitrofural and Enrofloxacin, with limits of detection at 0.0122 and 0.0280 μM, respectively. Furthermore, multistimulus responsive luminescent fibers and inks were developed, facilitating intelligent anticounterfeiting labels. The integration of these labels with back-propagation neural networks (BPNNs) significantly enhances pattern recognition and authentication capabilities, providing an efficacious strategy to combat counterfeit products and ensure consumer safety.
Collapse
Affiliation(s)
- Chunyu Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Kai Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
7
|
Mishra S, Patel C, Pandey D, Mukherjee S, Raghuvanshi A. Semiconducting 2D Copper(I) Iodide Coordination Polymer as a Potential Chemiresistive Sensor for Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311448. [PMID: 38326094 DOI: 10.1002/smll.202311448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The development of a cost-effective, ultra-selective, and room temperature gas sensor is the need of an hour, owing to the rapid industrialization. Here, a new 2D semiconducting Cu(I) coordination polymer (CP) with 1,4-di(1H-1,2,4-triazol-1-yl)benzene (1,4-TzB) ligand is reported. The CP1 consists of a Cu2I2 secondary building unit bridged by 1,4-TzB, and has high stability as well as semiconducting properties. The chemiresistive sensor, developed by a facile drop-casting method derived from CP1, demonstrates a response value of 66.7 at 100 ppm on methanol exposure, accompanied by swift transient (response and recovery time 17.5 and 34.2 s, respectively) behavior. In addition, the developed sensor displays ultra-high selectivity toward methanol over other volatile organic compounds , boasting LOD and LOQ values of 1.22 and 4.02 ppb, respectively. The CP is found to be a state-of-the-art chemiresistive sensor with ultra-high sensitivity and selectivity toward methanol at room temperature.
Collapse
Affiliation(s)
- Shivendu Mishra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Chandrabhan Patel
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Dilip Pandey
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Shaibal Mukherjee
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
- Centre for Advance Electronics (CAE), Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Abhinav Raghuvanshi
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
8
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
9
|
Li X, Wang Y, Zhang Z, Cai S, An Z, Huang W. Recent Advances in Room-Temperature Phosphorescence Metal-Organic Hybrids: Structures, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308290. [PMID: 37884272 DOI: 10.1002/adma.202308290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic hybrid (MOH) materials with room-temperature phosphorescence (RTP) have drawn attention in recent years due to their superior RTP properties of high phosphorescence efficiency and ultralong emission lifetime. Great achievement has been realized in developing MOH materials with high-performance RTP, but a systematic study on MOH materials with RTP feature is lacking. This review highlights recent advances in metal-organic hybrid RTP materials. The molecular packing, the photophysical properties, and their applications of metal-organic hybrid RTP materials are discussed in detail. Metal-organic hybrid RTP materials can be divided into six parts: coordination polymers, metal-organic frameworks (MOFs), metal-halide hybrids, organic ionic crystals, organic ionic polymers, and organic-inorganic hybrid perovskites. These RTP materials have been successfully applied in time-resolved data encryption, fingerprint recognition, information logic gates, X-ray imaging, and photomemory. This review not only provides the basic principles of designing RTP metal-organic hybrids, but also propounds the future research prospects of RTP metal-organic hybrids. This review offers many effective strategies for developing metal-organic hybrids with excellent RTP properties, thus satisfying practical applications.
Collapse
Affiliation(s)
- Xian Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yuefei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
10
|
Harrington K, Hogan DT, Sutherland TC, Stamplecoskie K. Photophysical investigation into room-temperature emission from xanthene derivatives. Phys Chem Chem Phys 2023; 25:24829-24837. [PMID: 37671931 DOI: 10.1039/d3cp02802j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The photophysical consequences of replacing the nitrogen heteroatom in phenothiazine with methylene are investigated for both solutions and crystalline solids. We analysed the excited state dynamics of four xanthene derivatives and observed an anomalous fluorescence from an energy level higher than the S1 state with lifetimes between 2.8 ns and 5.8 ns in solution and as solids. Additionally, the solid-state xanthene derivatives exhibited long-lived emission consistent with a triplet excited state, displaying millisecond lifetimes that ranged from 0.1 ms to 3.4 ms at ambient temperature in air. Our findings were supported by optical studies, crystallographic structural analyses, and DFT computations, which corroborated the photophysical measurements. It was concluded that the presence of the nitrogen atom in phenothiazine is crucial for achieving ultra-long emission lifetimes and that these results contribute to a deeper understanding of excited state dynamics which have potential implications for applications, such as display technologies, anticounterfeiting technologies, and sensors.
Collapse
Affiliation(s)
| | - David T Hogan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | | |
Collapse
|