1
|
Sedrpooshan M, Maltoni P, Peddis D, Burke AM, Messing ME, Westerström R. Single-Step Production and Self-Assembly of Magnetic Nanostructures for Magneto-Responsive Soft Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21682-21690. [PMID: 40148244 PMCID: PMC11986893 DOI: 10.1021/acsami.5c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Magneto-responsive soft films constitute a fascinating class of smart materials and devices capable of performing various tasks, such as micromanipulation or transport, noninvasive surgery, and sensing. These components are fabricated by incorporating magnetic materials into flexible substrates. In this context, arranging magnetic particles into elongated chains exhibiting shape anisotropy has shown great potential. Here, we introduce a novel technique for fabricating magnetically responsive films using continuous single-step production and self-assembly of magnetic nanoparticles from a carrier gas at atmospheric pressure into anisotropic magnetic structures directly onto flexible polymer layers. We show that the resulting magnetic soft films exhibit significant residual magnetization and a large response to external magnetic fields. Furthermore, we investigate the magnetic properties of the nanoparticle assemblies and show that interparticle interactions play a critical role in determining the final magnetic properties of the nanostructures. Moreover, we provide experimental evidence that fusing the nanoparticles via post-annealing results in a transition from magnetostatic to exchange interactions with an ≈50% increase in the coercivity.
Collapse
Affiliation(s)
- Mehran Sedrpooshan
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Synchrotron
Radiation Research, Lund University, 118, 221 00 Lund, Sweden
| | - Pierfrancesco Maltoni
- Department
of Chemistry and Industrial Chemistry & INSTM RU, nM2-Lab, University of Genova, 16146 Genova, Italy
- Institute
of Structure of Matter, National Research Council (CNR), nM2-Lab, Via Salaria km 29.300, Monterotondo
Scalo, 00015 Rome, Italy
| | - Davide Peddis
- Department
of Chemistry and Industrial Chemistry & INSTM RU, nM2-Lab, University of Genova, 16146 Genova, Italy
- Institute
of Structure of Matter, National Research Council (CNR), nM2-Lab, Via Salaria km 29.300, Monterotondo
Scalo, 00015 Rome, Italy
| | - Adam M. Burke
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Solid
State Physics, Lund University, 118, 221 00 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Solid
State Physics, Lund University, 118, 221 00 Lund, Sweden
| | - Rasmus Westerström
- NanoLund, Lund University, 118, 221 00 Lund, Sweden
- Synchrotron
Radiation Research, Lund University, 118, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Haque MA, Maestas JR, Zhu X, Hanson BL, Wu DT, Wu N. High-Density and Well-Aligned Hierarchical Structures of Colloids Assembled under Orthogonal Magnetic and Electric Fields. ACS NANO 2025; 19:760-770. [PMID: 39745311 DOI: 10.1021/acsnano.4c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph R Maestas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Benjamin L Hanson
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David T Wu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Institute of Chemistry, Academia Sinica, Nangang 115, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Leech G, Melcher L, Chiu M, Nugent M, Juliano S, Burton L, Kang J, Kim SJ, Roy S, Farhadi L, Ross JL, Das M, Rust MJ, Robertson-Anderson RM. Programming scheduled self-assembly of circadian materials. Nat Commun 2025; 16:176. [PMID: 39747896 PMCID: PMC11696221 DOI: 10.1038/s41467-024-55645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation of materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows for oscillatory material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.
Collapse
Affiliation(s)
- Gregor Leech
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Michelle Chiu
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maya Nugent
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Shirlaine Juliano
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Lily Burton
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Janet Kang
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Soo Ji Kim
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Sourav Roy
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Leila Farhadi
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
4
|
Yakovlev EV, Simkin IV, Shirokova AA, Kohanovskaya AV, Gursky KD, Dragun MA, Nasyrov AD, Yurchenko SO, Kryuchkov NP. Kinetically blocked self-assembly of colloidal strings with tunable interactions in magnetic fields. J Chem Phys 2024; 161:184907. [PMID: 39540451 DOI: 10.1063/5.0231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Tunable self-assembly driven by external electric or magnetic fields is of significant interest in modern soft matter physics. While extensively studied in two-dimensional systems, it remains insufficiently explored in three-dimensional systems. In this study, we investigated the formation of vertical strings from an initial monolayer system of particles deposited on a horizontal substrate under the influence of an external magnetic field using experiments, computer simulations, and theoretical frameworks. We demonstrated that the main mechanism of string self-assembly is merging, driven by the interplay between gravity and induced tunable interparticle interactions. During this process, the system has to overcome a saddle point on the energy landscape, whose height increases with the string height. At a certain point, further self-assembly becomes kinetically blocked in a metastable state, far from equilibrium. This contrasts sharply with the typical scenario for tunable self-assembly in two dimensions, where the resulting structures usually correspond to the equilibrium state. Therefore, this finding opens up opportunities for more detailed control of three-dimensional tunable self-assembly by designing and tuning various potential barriers along the kinetic pathways.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Ivan V Simkin
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Anastasia A Shirokova
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | | | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Maksim A Dragun
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
5
|
Singh N, Srivastava K, Kumar A, Yadav N, Yadav A, Dubey S, Singh R, Gehlot A, Verma AS, Gupta N, Kumar T, Wu Y, Hongyu Z, Mondal A, Pandey K, Brajpuriya R, Kumar S, Gupta R. Challenges and opportunities in engineering next-generation 3D microelectronic devices: improved performance and higher integration density. NANOSCALE ADVANCES 2024:d4na00578c. [PMID: 39569337 PMCID: PMC11575647 DOI: 10.1039/d4na00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 11/22/2024]
Abstract
In recent years, nanotechnology and materials science have evolved and matured, making it increasingly easier to design and fabricate next-generation 3D microelectronics. The process has changed drastically from traditional 2D microelectronics, resulting in improved performance, higher integration density, and new functionalities. As applications become more complex and power-intensive, this technology can address the demands of high-performance computing, advanced sensors, and cutting-edge communication systems via wearable, flexible devices, etc. To manufacture higher-density microelectronics, recent advances in the fabrication of such 3D devices are discussed. Furthermore, the paper stresses the importance of novel materials and architectures, such as monolithic 3D integration and heterogeneous integration, in overcoming these challenges. We emphasize the importance of addressing complex issues to achieve better performance and higher integration density, which will play an important role in shaping the next generation of microelectronic devices. The multifaceted challenges involved in developing next-generation 3D microelectronic devices are also highlighted.
Collapse
Affiliation(s)
- Niharika Singh
- Department of Informatics, School of Computer Science, University of Petroleum & Energy Studies Dehradun-248007 Uttarakhand India
| | - Kingshuk Srivastava
- Department of CSE, Vivekananda Global University Jaipur Rajasthan 303012 India
| | - Ajay Kumar
- Jaypee Institute of Information Technology Noida Uttar Pradesh India
| | - Neha Yadav
- Center for Advanced Laser Manufacturing (CALM), Shandong University of Technology Zibo 255000 P. R. China
| | - Ashish Yadav
- Center for Advanced Laser Manufacturing (CALM), Shandong University of Technology Zibo 255000 P. R. China
| | - Santosh Dubey
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies Dehradun 248007 Uttarakhand India
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University Dehradun 248007 India
- Department of Project Management, Universidad Internacional Iberoamericana Campeche 24560 CP Mexico
| | - Anita Gehlot
- Uttaranchal Institute of Technology, Uttaranchal University Dehradun 248007 India
- Department of Project Management, Universidad Internacional Iberoamericana Campeche 24560 CP Mexico
| | - Ajay Singh Verma
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University Dehradun Uttarakhand 248007 India
| | - Neha Gupta
- Applied Science Department, Greater Noida Institute of Technology Greater Noida 201310 India
| | - Tanuj Kumar
- Department of Nanoscience & Materials, Central University of Jammu Jammu 181143 India
| | - Yongling Wu
- Center for Advanced Laser Manufacturing (CALM), Shandong University of Technology Zibo 255000 P. R. China
| | - Zheng Hongyu
- Center for Advanced Laser Manufacturing (CALM), Shandong University of Technology Zibo 255000 P. R. China
| | - Aniruddha Mondal
- Department of Physics, National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| | - Kailash Pandey
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies Dehradun 248007 Uttarakhand India
| | - Ranjeet Brajpuriya
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies Dehradun 248007 Uttarakhand India
| | - Shalendra Kumar
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies Dehradun 248007 Uttarakhand India
| | - Rajeev Gupta
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies Dehradun 248007 Uttarakhand India
| |
Collapse
|
6
|
Bouzid O, Martínez-Fernández D, Herranz M, Karayiannis NC. Entropy-Driven Crystallization of Hard Colloidal Mixtures of Polymers and Monomers. Polymers (Basel) 2024; 16:2311. [PMID: 39204531 PMCID: PMC11359749 DOI: 10.3390/polym16162311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The most trivial example of self-assembly is the entropy-driven crystallization of hard spheres. Past works have established the similarities and differences in the phase behavior of monomers and chains made of hard spheres. Inspired by the difference in the melting points of the pure components, we study, through Monte Carlo simulations, the phase behavior of athermal mixtures composed of fully flexible polymers and individual monomers of uniform size. We analyze how the relative number fraction and the packing density affect crystallization and the established ordered morphologies. As a first result, a more precise determination of the melting point for freely jointed chains of tangent hard spheres is extracted. A synergetic effect is observed in the crystallization leading to synchronous crystallization of the two species. Structural analysis of the resulting ordered morphologies shows perfect mixing and thus no phase separation. Due to the constraints imposed by chain connectivity, the local environment of the individual spheres, as quantified by the Voronoi polyhedron, is systematically more spherical and more symmetric compared to that of spheres belonging to chains. In turn, the local environment of the ordered phase is more symmetric and more spherical compared to that of the initial random packing, demonstrating the entropic origins of the phase transition. In general, increasing the polymer content reduces the degree of crystallinity and increases the melting point to higher volume fractions. According to the present findings, relative concentration is another determining factor in controlling the phase behavior of hard colloidal mixtures based on polymers.
Collapse
Affiliation(s)
- Olia Bouzid
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
7
|
Harris DH, Torres-Díaz I. Directed assembly of small binary clusters of magnetizable ellipsoids. SOFT MATTER 2024; 20:6411-6423. [PMID: 39083371 DOI: 10.1039/d4sm00300d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of binary structures as a function of particle aspect ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with respect to the other. The simulation results match previously reported experiments on the directed assembly of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium properties for various structures with rotational symmetries, as well as open and enclosed structures under the influence of a uniform magnetic field.
Collapse
Affiliation(s)
- David H Harris
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Isaac Torres-Díaz
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
8
|
Tang R, Hughes RA, Tuff WJ, Corcoran A, Neretina S. Rapid formation of gold core-satellite nanostructures using Turkevich-synthesized satellites and dithiol linkers: the do's and don'ts for successful assembly. NANOSCALE ADVANCES 2024; 6:3632-3643. [PMID: 38989523 PMCID: PMC11232561 DOI: 10.1039/d4na00390j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Turkevich syntheses represent a foundational approach for forming colloids of monodisperse gold nanoparticles where the use of these structures as building blocks when forming multicomponent nanoassemblies is pervasive. The core-satellite motif, which is characterized by a central core structure onto which satellite structures are tethered, distinguishes itself in that it can realize numerous plasmonic nanogaps with nanometer scale widths. Established procedures for assembling these multicomponent structures are, to a large extent, empirically driven, time-consuming, difficult to reproduce, and in need of a strong mechanistic underpinning relating to the close-range electrostatic interactions needed to secure satellite structures onto core materials. Described herein is a rapid, repeatable procedure for assembling core-satellite structures using Turkevich-grown satellites and dithiol linkers. With this successful procedure acting as a baseline for benchmarking modified procedures, a rather complex parameter space is understood in terms of timeline requirements for various processing steps and an analysis of the factors that prove consequential to assembly. It is shown that seemingly innocuous procedures realize sparsely populated cores whereas cores initially obstructed with commonly used capping agents lead to few disruptions to satellite attachment. Once these factors are placed under control, then it is the ionic strength imposed by the reaction biproducts of the Turkevich synthesis that is the critical factor in assembly because they decide the spatial extent of the electrical double layer surrounding each colloidal nanoparticle. With this understanding, it is possible to control the ionic strength through the addition or subtraction of various ionic species and assert control over the assembly process. The work, hence, advances the rules for a robust core-satellite assembly process and, in a broader sense, contributes to the knowhow required for the precise, programmable, and controllable assembly of multicomponent systems.
Collapse
Affiliation(s)
- Runze Tang
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Ana Corcoran
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry & Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
9
|
Li J, Zhang B, Wang ZY. Activity-induced stiffness, entanglement network and dynamic slowdown in unentangled semidilute polymer solutions. SOFT MATTER 2024; 20:5174-5182. [PMID: 38895794 DOI: 10.1039/d4sm00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active polymers possess numerous unique properties that are quite different from those observed in the system of small active molecules due to the intricate interplay between their activity and topological constraints. This study focuses on the conformational changes induced by activity, impacting effective stiffness and crucially influencing entanglement and dynamics. When the two terminals of a linear chain undergo active modification through coupling to a high-temperature thermal bath, there is a substantial increase in chain size, indicating a notable enhancement in effective stiffness. Unlike in passive semiflexible chains where stiffness predominantly affects local bond angles, activity-induced stiffness manifests at the scale of tens of monomers. While activity raises the ambient temperature, it significantly decreases diffusion by over an order of magnitude. The slowdown of the dynamics observed can be attributed to increased entanglement due to chain elongation.
Collapse
Affiliation(s)
- Jing Li
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Zhi-Yong Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| |
Collapse
|
10
|
Liu R, Zhang R, Dong X, Chen S, Zhang L, Shi T, Yuan J, Hedin N, Chen G. Chirality Transfer of Glycopeptide across Scales Defined by the Continuity of Hydrogen Bonds. ACS NANO 2024; 18:14367-14376. [PMID: 38767458 DOI: 10.1021/acsnano.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In nature, chirality transfer refines biomolecules across all size scales, bestowing them with a myriad of sophisticated functions. Despite recent advances in replicating chirality transfer with biotic or abiotic building blocks, a molecular understanding of the underlying mechanism of chirality transfer remains a daunting challenge. In this paper, the coassembly of two types of glycopeptide molecules differing in capability of forming intermolecular hydrogen bonds enabled the involvement of discontinuous hydrogen bond, which allowed for a nanoscale chirality transfer from glycopeptide molecules to chiral micelles, yet inhibited the micrometer scale chirality transfer toward helix formation, leading to an achiral transfer from chiral micelles to planar monolayer. Upon stacking the monolayer into a bilayer, the nonsuperimposable front and back faces of the chiral micelles involved in the monolayer ribbons lead to the opposite rotation of two layers toward increasing the continuity of H-bonds. The resultant continuity triggered the symmetry breaking of stacked bilayers and thus reactivated the micrometer-scale chirality transfer toward the final helix. This work delineates a promising step toward a better understanding and replicating the naturally occurring chirality transfer events and will be instructive to future chiral material design.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xiaoduo Dong
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Kim J, Lee K, Kim S, Sohn BH. Orientation and stretching of supracolloidal chains of diblock copolymer micelles by spin-coating process. NANOSCALE 2024; 16:10377-10387. [PMID: 38739015 DOI: 10.1039/d4nr00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Supracolloidal chains consisting of nano- or micro-scale particles exhibit anisotropic properties not observed in individual particles. The orientation of the chains is necessary to manifest such characteristics on a macroscopic scale. In this study, we demonstrate the orientation of supracolloidal chains composed of nano-scale micelles of a diblock copolymer through spin-coating. We observed separate chains coated on a substrate with electron microscopy, and analyzed the orientation and stretching of the chains quantitatively with image analysis software. In drop-casting, the chains were coated randomly with no preferred orientation, and the degree of stretching exhibited an intrinsic semi-flexible nature. In contrast, spin-coated chains were aligned in the radial direction, and the apparent persistence length of the chain increased, confirming the stretching of the chain quantitatively. Furthermore, by incorporating fluorophores into supracolloidal chains and confirming the oriented chains with confocal fluorescence microscopy, it is demonstrated that oriented chains can be utilized as a template to align functional materials.
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sangyoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Wan S, Gao Y, Zhang Z, Wu F, Zheng Z, Chen H, Xi X, Yang D, Li T, Nie Z, Dong A. Oriented Linear Self-Assembly of Colloidal Nanocrystals through Regioselective Formation of Hydrogen-Bonded Supramolecular Bridges. J Am Chem Soc 2024; 146:14225-14234. [PMID: 38717289 DOI: 10.1021/jacs.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The linear assembly of nanocrystals (NCs) with orientational order presents a significant challenge in the field of colloidal assembly. This study presents an efficient strategy for assembling oleic acid (OAH)-capped, faceted rare earth NCs─such as nanorods, nanoplates, and nanodumbbells─into flexible chain-like superstructures. Remarkably, these NC chains exhibit a high degree of particle orientation even with an interparticle distance reaching up to 15 nm. Central to this oriented assembly method is the facet-selective adsorption of low-molecular-weight polyethylene glycol (PEG), such as PEG-400 (Mn = 400), onto specific facets of NCs. This regioselectivity is achieved by exploiting the lower binding affinity of OAH ligands on the (100) facets of rare earth NCs, enabling facet-specific ligand displacement and subsequent PEG attachment. By adjusting the solvent polarity, the linear assembly of NCs is induced by the solvophobic effect, which simultaneously promotes the formation of hydrogen-bonded PEG supramolecular bridges. These supramolecular bridges effectively connect NCs and exhibit sufficient robustness to maintain the structural integrity of the chains, despite the large interparticle spacing. Notably, even when coassembling different types of NCs, the resulting multicomponent chains still feature highly selective facet-to-facet connections. This work not only introduces a versatile method for fabricating well-aligned linear superstructures but also provides valuable insights into the fundamental principles governing the facet-selective assembly of NCs in solution.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yutong Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fangyue Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Ziyue Zheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Zhihong Nie
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Huang Y, Wu C, Chen J, Tang J. Colloidal Self-Assembly: From Passive to Active Systems. Angew Chem Int Ed Engl 2024; 63:e202313885. [PMID: 38059754 DOI: 10.1002/anie.202313885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
14
|
Sharma C, Sarkar A, Walther A. Transient co-assemblies of micron-scale colloids regulated by ATP-fueled reaction networks. Chem Sci 2023; 14:12299-12307. [PMID: 37969603 PMCID: PMC10631234 DOI: 10.1039/d3sc04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023] Open
Abstract
Self-assembly of colloidal particles offers an attractive bottom-up approach to functional materials. Current design strategies for colloidal assemblies are mostly based on thermodynamically controlled principles and lack autonomous behavior. The next advance in the properties of colloidal assemblies will come from coupling these structures to out-of-equilibrium chemical reaction networks furnishing them with autonomous and dynamic behavior. This, however, constitutes a major challenge of carefully modulating the interparticle potentials on a temporal circuit program and avoiding kinetic trapping and irreversible aggregation. Herein, we report the coupling of a fuel-driven DNA-based enzymatic reaction network (ERN) to micron-sized colloidal particles to achieve their transient co-assembly. The ERN operating on the molecular level transiently releases an Output strand which links two DNA functionalized microgel particles together into co-assemblies with a programmable assembly lifetime. The system generates minimal waste and recovers all components of the ERN after the consumption of the ATP fuel. The system can be reactivated by addition of new fuel as shown for up to three cycles. The design can be applied to organize other building blocks into hierarchical structures and materials with advanced biomimetic properties.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Aritra Sarkar
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Andreas Walther
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
15
|
Ulusel M, Dinçer O, Şahin O, Çınar-Aygün S. Solidification-Controlled Compartmentalization of Bismuth-Tin Colloidal Particles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37897796 DOI: 10.1021/acsami.3c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Nucleation and growth are the main steps of microstructure formation. Nucleation occurs stochastically in a bulk material but can be controlled by introducing or removing catalytic sites, or creating local gradients. Such manipulations can already be implemented to bulk materials at a high level of sophistication but are still challenging on micrometer or smaller scales. Here, we explore the potential to transfer this vast knowledge in classical metallurgy to the fabrication of colloidal particles and report strategies to control phase distribution within a particle by adjusting its solidification conditions. Benefiting from the core-shell structure of liquid metals and the constrained volume of particles, we demonstrate that the same alloy particle can be transformed into a lamellar, composite, Janus, or striped particle by the felicitous choice of the phase separation process pathway. This methodology offers an unprecedented opportunity for the scalable production of compartmentalized particles in high yields that are currently limited to inherently unscalable methods.
Collapse
Affiliation(s)
- Mert Ulusel
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Orçun Dinçer
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ozan Şahin
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Simge Çınar-Aygün
- Dept. of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
16
|
Karmakar R, Chakrabarti J. Hot crystals of thermo-responsive particles with temperature dependent diameter in the presence of a temperature gradient. J Chem Phys 2023; 159:034904. [PMID: 37466232 DOI: 10.1063/5.0157604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Structure formation under non-equilibrium steady state conditions is poorly understood. A non-equilibrium steady state can be achieved in a system by maintaining a temperature gradient. A class of cross-linked microgel particles, such as poly-N-iso-propylacrylamide, is reported to increase in size due to the adsorption of water as the temperature decreases. Here, we study thermo-responsive particles with a temperature sensitive diameter in the presence of a temperature gradient, using molecular dynamics simulations with the Langevin thermostat. We find long-ranged structural order using bond order parameters in both cold and hot regions of the system beyond a certain diameter ratio of the cold and hot particles. This is due to an increase in packing and pressure in both regions. Our observations might be useful in understanding ordered structures under extreme conditions of a non-equilibrium steady state.
Collapse
Affiliation(s)
- Rahul Karmakar
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake Kolkata 700106, India
| | - J Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake Kolkata 700106, India
| |
Collapse
|
17
|
Lee K, Sohn BH. Step-growth polymerization of supracolloidal chains from patchy micelles of diblock copolymers. J Colloid Interface Sci 2023; 648:727-735. [PMID: 37321092 DOI: 10.1016/j.jcis.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
HYPOTHESIS The formation of supracolloidal chains from the patchy micelles of diblock copolymers bears a close resemblance to traditional step-growth polymerization of difunctional monomers in many aspects, including chain-length evolution, size distribution, and initial-concentration dependence. Thus, understanding the colloidal polymerization based on the step-growth mechanism can offer potential control over the formation of supracolloidal chains in terms of chain structure and reaction rate. EXPERIMENTS We analyzed the size evolution of supracolloidal chains of patchy micelles of PS-b-P4VP by investigating a large number of colloidal chains visualized in SEM images. We varied the initial concentration of patchy micelles to achieve a high degree of polymerization and a cyclic chain. To manipulate the polymerization rate, we also changed the ratio of water to DMF and adjusted the patch size by employing PS(25)-b-P4VP(7) and PS(145)-b-P4VP(40). FINDINGS We confirmed the step-growth mechanism for the formation supracolloidal chains from patchy micelles of PS-b-P4VP. Based on this mechanism, we were able to achieve a high degree of polymerization early in the reaction by increasing the initial concentration and form cyclic chains by diluting the solution. We also accelerated colloidal polymerization by increasing the ratio of water to DMF in the solution and patch size by using PS-b-P4VP with a larger molecular weight.
Collapse
Affiliation(s)
- Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Herranz M, Pedrosa C, Martínez-Fernández D, Foteinopoulou K, Karayiannis NC, Laso M. Fine-tuning of colloidal polymer crystals by molecular simulation. Phys Rev E 2023; 107:064605. [PMID: 37464607 DOI: 10.1103/physreve.107.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
Through extensive molecular simulations we determine a phase diagram of attractive, fully flexible polymer chains in two and three dimensions. A rich collection of distinct crystal morphologies appear, which can be finely tuned through the range of attraction. In three dimensions these include the face-centered cubic, hexagonal close packed, simple hexagonal, and body-centered cubic crystals and the Frank-Kasper phase. In two dimensions the dominant structures are the triangular and square crystals. A simple geometric model is proposed, based on the concept of cumulative neighbors of ideal crystals, which can accurately predict most of the observed structures and the corresponding transitions. The attraction range can thus be considered as an adjustable parameter for the design of colloidal polymer crystals with tailored morphologies.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Clara Pedrosa
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
19
|
Cai C, Lin J. Recent advances in the solution self‐assembly of polypeptides. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
20
|
Fernández-Martínez J, Carretero-Palacios S, Molina P, Bravo-Abad J, Ramírez MO, Bausá LE. Silver Nanoparticle Chains for Ultra-Long-Range Plasmonic Waveguides for Nd 3+ Fluorescence. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4296. [PMID: 36500918 PMCID: PMC9737231 DOI: 10.3390/nano12234296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic waveguides have been shown to be a promising approach to confine and transport electromagnetic energy beyond the diffraction limit. However, ohmic losses generally prevent their integration at micrometric or millimetric scales. Here, we present a gain-compensated plasmonic waveguide based on the integration of linear chains of Ag nanoparticles on an optically active Nd3+-doped solid-state gain medium. By means of dual confocal fluorescence microscopy, we demonstrate long-range optical energy propagation due to the near-field coupling between the plasmonic nanostructures and the Nd3+ ions. The subwavelength fluorescence guiding is monitored at distances of around 100 µm from the excitation source for two different emission ranges centered at around 900 nm and 1080 nm. In both cases, the guided fluorescence exhibits a strong polarization dependence, consistent with the polarization behavior of the plasmon resonance supported by the chain. The experimental results are interpreted through numerical simulations in quasi-infinite long chains, which corroborate the propagation features of the Ag nanoparticle chains at both excitation (λexc = 590 nm) and emission wavelengths. The obtained results exceed by an order of magnitude that of previous reports on electromagnetic energy transport using linear plasmonic chains. The work points out the potential of combining Ag nanoparticle chains with a small interparticle distance (~2 nm) with rare-earth-based optical gain media as ultra-long-range waveguides with extreme light confinement. The results offer new perspectives for the design of integrated hybrid plasmonic-photonic circuits based on rare-earth-activated solid-state platforms.
Collapse
Affiliation(s)
- Javier Fernández-Martínez
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sol Carretero-Palacios
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Molina
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Bravo-Abad
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mariola O. Ramírez
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luisa E. Bausá
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Stenke LJ, Saccà B. Growth Rate and Thermal Properties of DNA Origami Filaments. NANO LETTERS 2022; 22:8818-8826. [PMID: 36327970 PMCID: PMC9706658 DOI: 10.1021/acs.nanolett.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Synthetic DNA filaments exploit the programmability of the individual units and their predictable self-association to mimic the structural and dynamic features of natural protein filaments. Among them, DNA origami filamentous structures are of particular interest, due to the versatility of morphologies, mechanical properties, and functionalities attainable. We here explore the thermodynamic and kinetic properties of linear structures grown from a ditopic DNA origami unit, i.e., a monomer with two distinct interfaces, and employ either base-hybridization or base-stacking interactions to trigger the dimerization and polymerization process. By observing the temporal evolution of the system toward equilibrium, we reveal kinetic aspects of filament growth that cannot be easily captured by postassembly studies. Our work thus provides insights into the thermodynamics and kinetics of hierarchical DNA origami assembly and shows how it can be mastered by the anisotropy of the building unit and its self-association mode.
Collapse
|
22
|
Abstract
Over the past 40 years, structural and dynamic DNA nanotechnologies have undoubtedly demonstrated to be effective means for organizing matter at the nanoscale and reconfiguring equilibrium structures, in a predictable fashion and with an accuracy of a few nanometers. Recently, novel concepts and methodologies have been developed to integrate nonequilibrium dynamics into DNA nanostructures, opening the way to the construction of synthetic materials that can adapt to environmental changes and thus acquire new properties. In this Review, we summarize the strategies currently applied for the construction of synthetic DNA filaments and conclude by reporting some recent and most relevant examples of DNA filaments that can emulate typical structural and dynamic features of the cytoskeleton, such as compartmentalization in cell-like vesicles, support for active transport of cargos, sustained or transient growth, and responsiveness to external stimuli.
Collapse
|