1
|
Jiang X, Chen C, Chen J, Yu S, Yu W, Shen L, Li B, Zhou M, Lin H. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169142. [PMID: 38070550 DOI: 10.1016/j.scitotenv.2023.169142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.
Collapse
Affiliation(s)
- Xialiang Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shuning Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
3
|
Roy S, Li Z, Chen Z, Mata AC, Kumar P, Sarma SC, Teixeira IF, Silva IF, Gao G, Tarakina NV, Kibria MG, Singh CV, Wu J, Ajayan PM. Cooperative Copper Single-Atom Catalyst in 2D Carbon Nitride for Enhanced CO 2 Electrolysis to Methane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300713. [PMID: 37572690 DOI: 10.1002/adma.202300713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Renewable-electricity-powered carbon dioxide (CO2 ) reduction (eCO2 R) to high-value fuels like methane (CH4 ) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8-electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu-structures can boost eCO2 R-to-CH4 selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d-band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na-polyheptazine (PHI) and Li-polytriazine imides (PTI), are exploited to host Cu-N2 type single-atom sites with high density (≈1.5 at%), via a facile metal-ion exchange process. Optimized Cu loading in nanocrystalline Cu-PTI maximizes eCO2 R-to-CH4 performance with Faradaic efficiency (FECH4 ) of ≈68% and a high partial current density of 348 mA cm-2 at -0.84 V vs reversible hydrogen electrode (RHE), surpassing the state-of-the-art catalysts. Multi-Cu substituted N-appended nanopores in the CN frameworks yield thermodynamically stable quasi-dual/triple sites with large interatomic distances dictated by the pore dimensions. First-principles calculations elucidate the relative Cu-CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO2 -to-CH4 energy profile landscape. The 9N pores in Cu-PTI yield cooperative Cu-Cu sites that synergistically enhance the kinetics of the rate-limiting steps in the eCO2 R-to-CH4 pathway.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zhiwen Chen
- Department of Material Science and Engineering, University of Toronto, Ontario, M5S 1A1, Canada
| | - Astrid Campos Mata
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, T2N 1N4, Canada
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London, London, England, SW7 2AZ, UK
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Ingrid F Silva
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Guanhui Gao
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, T2N 1N4, Canada
| | - Chandra Veer Singh
- Department of Material Science and Engineering, University of Toronto, Ontario, M5S 1A1, Canada
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
4
|
Copper‐mediated intermolecular C−H aminohalogenation of indoles at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Zhang Y, Huang Y, Yu K, Zhang X, Yu W, Tang J, Tian Y, Wei W, Zhang Z, Liang T. Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01329k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient intermolecular C2,3-H aminoalkylation of indoles with 9H-xanthenes and azoles via iron–iodine co-catalyzed tandem C–N/C–C bond formation has been developed.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yating Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kewei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiale Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yiran Tian
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|