1
|
Muthurasu A, Natarajan L, Kim TW, Ko TH, Lee YJ, Kim HY. Engineering Efficient Bifunctional Electrocatalyst of Ruthenium Nanocluster Heterointerface Integrated Nickel-Iron Diselenide for Alkaline Freshwater and Seawater Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25237-25252. [PMID: 40234216 DOI: 10.1021/acsami.4c22733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
It is essential to develop effective and long-lasting electrocatalysts for seawater splitting to prevent the unwanted chlorine evolution reaction and withstand the corrosive nature of seawater in seawater electrolysis technology. In this study, a unique transition metal catalyst is developed to enhance seawater splitting. The catalyst is composed of a ruthenium (Ru) nanocluster anchored onto nickel-iron diselenide nanosheet arrays grown on nickel foam (Ru-MOF NixFe1-xSe2/NF). The Ru nanocluster and metal-organic framework-based Ni and Fe diselenide heterogeneous catalysts exhibit exceptional performance in sustaining high-current-density hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) during seawater electrolysis. Consequently, OER requires minimal overpotentials of 250, 290, and 310, 390 mV, while HER needs overpotentials of 130, 199, and 189, 315 mV to attain current densities of 100 and 500 mA cm-2 in 1.0 M KOH and 1.0 M KOH + natural seawater. Moreover, it maintains stability for 100 h at a steady current density of 100 or 500 mA cm-2. Theoretical calculations indicate that including nanocluster Ru enhances the Gibbs free energy of adsorption for H2O molecules and intermediates in the HER/OER on metal selenide sites. This optimization leads to improved electrocatalytic water/seawater splitting. In the context of overall water splitting, the composite is an effective catalyst for both anode and cathode, needing voltages of 1.61, 1.68, and 1.71 V to obtain a current density of 100 mA cm-2 in alkaline freshwater, simulated seawater, and natural seawater. Particularly, it retains consistent performance during a 100 h test period, indicating a promising future for practical applications.
Collapse
Affiliation(s)
- Alagan Muthurasu
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Logeshwaran Natarajan
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Tae Woo Kim
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Tae Hoon Ko
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Hak Yong Kim
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
2
|
Shi L, Wu X, Zhao K, Guo X, Zhang X, Lv Y, Guo J. Trace RuO 2 nanoparticles loaded nickel-coated multi-walled carbon nanotubes to boost hydrogen evolution reaction under acidic and alkaline media. J Colloid Interface Sci 2025; 679:100-108. [PMID: 39357220 DOI: 10.1016/j.jcis.2024.09.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Developing low-cost catalysts with high activity for the Hydrogen Evolution Reaction (HER) is a main challenge to reduce the dependence on precious metals while maintaining the catalytic activity. In this study, nickel-plated multi-walled carbon nanotubes (Ni-MWCNTs) with a large number of active sites were selected, and Ni-MWCNTs electrocatalysts loaded with trace amounts of RuO2 nanoparticles were prepared by annealing treatment, which exhibited excellent HER performances in both acidic and alkaline media. The RuO2 nanoparticles loaded nickel-coated multi-walled carbon nanotubes (RuO2@Ni-MWCNTs) had a small electrochemical impedance spectrum (EIS) and a large electrochemically active surface area (ECSA). Notably, RuO2@Ni-MWCNTs with less than 1 % Ru content exhibited excellent catalytic activities in both acidic and alkaline solutions. The results showed that the overpotentials of RuO2@Ni-MWCNTs were 20.2 mV (alkaline) and 73.7 mV (acidic), respectively. After stabilization at 20 mA cm-2 for 90 h, the evaluation results showed that RuO2@Ni-MWCNTs could maintain their catalytic efficiency without significant degradation.
Collapse
Affiliation(s)
- Lijuan Shi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Kenan Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xinyu Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiuli Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
Zhang M, Zhou B, Gong Y, Shang M, Xiao W, Wang J, Dai C, Zhang H, Wu Z, Wang L. Regulating Mo-based alloy-oxide active interfaces for efficient alkaline hydrogen evolution assisted by hydrazine oxidation. J Colloid Interface Sci 2024; 667:73-81. [PMID: 38621333 DOI: 10.1016/j.jcis.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Improving the efficiency of overall water splitting (OWS) is crucial due to the slow four-electron transfer process in the oxygen evolution reaction (OER). The coupling of the thermodynamically favorable hydrazine oxidation reaction (HzOR) with the hydrogen evolution reaction (HER) significantly boosts hydrogen production. A Ru-decorated MoNi/MoO2 micropillar (Ru-MoNi/MoO2) has been synthesized using a hydrothermal followed by reduction annealing. Benefiting from Ru moderating the active interface of Mo-based alloys/oxides and the unique one-dimensional micropillar morphology. The synthesized Ru-MoNi/MoO2 exhibits outstanding bifunctional activity for HER and HzOR, achieving 10 mA cm-2 at merely -13 mV and -34 mV in 1 M KOH and 1 M KOH + 0.5 M N2H4, respectively. Notably, with Ru-MoNi/MoO2 in a dual-electrode setup, only 0.57 V is needed to achieve 50 mA cm-2, demonstrating good stability and facilitating hydrazine-assisted water splitting (OHzS). This work offers insights into the modulation of alloy/metal oxide active interfaces, contributing to the development of efficient bifunctional catalysts for HER and HzOR.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuecheng Gong
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengfan Shang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Jinsong Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chunlong Dai
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No.9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang City, Shandong Province, PR China
| | - Huadong Zhang
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No.9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang City, Shandong Province, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
4
|
Habib MA, Burse S, Lin S, Mandavkar R, Joni MH, Jeong JH, Lee SS, Lee J. Dual-Functional Ru/Ni-B-P Electrocatalyst Toward Accelerated Water Electrolysis and High-Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307533. [PMID: 37940617 DOI: 10.1002/smll.202307533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Development of advanced electrocatalysts for the green hydrogen production by water electrolysis is an important task to reduce the climate and environmental issues as well as to meet the future energy demands. Herein, Ru/Ni-B-P sphere electrocatalyst is demonstrated by a combination of hydrothermal and soaking approaches, meeting the industrial requirement of low cell voltage with stable high-current operation. The Ru/Ni-B-P sphere catalyst demonstrates low overpotentials of 191 and 350 mV at 300 mA cm-2 with stable high current operation, ranking it as one of the best oxygen evolution reaction (OER) electrocatalysts. The bifunctional 2-E system demonstrates a low cell voltage of 2.49 V at 2000 mA cm-2 in 6 m KOH at 60 °C of harsh industrial operation condition. It also demonstrates outstanding stability with continuous 120 h (5 days) CA operation at 1000 mA cm-2. Further, the hybrid configuration of Ru/Ni-B-P || Pt/C being paired with the conventional benchmark electrode demonstrates a record low 2-E cell voltage of 2.40 V at 2000 mA cm-2 in 6 m KOH and excellent stability at high current of 1500 mA cm-2 under industrial operational condition.
Collapse
Affiliation(s)
- Md Ahasan Habib
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Shalmali Burse
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Shusen Lin
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Rutuja Mandavkar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Mehedi Hasan Joni
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| |
Collapse
|
5
|
Li Z, Dong X, Zeng W. Adsorption of CH 4, CO, and H 2S on a MoTe 2 Monolayer Doped with Metal Atoms (Au and Ru): An Ab Initio Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13228-13241. [PMID: 37676751 DOI: 10.1021/acs.langmuir.3c01664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Detecting toxic gases, such as CH4, CO, and H2S, in everyday life holds great significance. This research article focuses on investigating the adsorption characteristics of CH4, CO, and H2S on MoTe2 and MoTe2 doped with Au and Ru using the density functional theory. The study examines various aspects, including adsorption energy, charge transfer, density of states, and charge density difference of the adsorption configuration. The findings demonstrate that the adsorption properties of Ru-doped MoTe2 exhibit a significant enhancement for all three gases, with CO displaying the highest adsorption performance. Through comparative analysis, it is evident that the adsorption affinity between MoTe2-Ru and the three gases is robust, thus indicating improved gas detection capabilities.
Collapse
Affiliation(s)
- Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Xiaoyang Dong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
6
|
Yin Y, Zhang T, Feng L, Ran J, Ma C, Tan Y, Song W, Yang B. Growth of nanostructured Cu 3Al alloy films by magnetron sputtering for non-enzymatic glucose-sensing applications. RSC Adv 2023; 13:14641-14650. [PMID: 37215753 PMCID: PMC10198095 DOI: 10.1039/d3ra02076b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Enzymatic glucose sensors usually exhibit excellent sensitivity and selectivity but suffer from poor stability due to the negative influence of temperature and humidity on enzyme molecules. As compared to enzymatic glucose sensors, non-enzymatic counterparts are generally more stable but are facing challenges in concurrently improving both sensitivity and selectivity of a trace amount of glucose molecules in physiological samples such as saliva and sweat. Here, a novel non-enzymatic glucose sensor based on nanostructured Cu3Al alloy films has been fabricated by a facile magnetron-sputtering followed by controllable electrochemical etching approach. Since the metal Al is more reductive than Cu, by selectively etching aluminum in the Cu3Al alloys, nanostructured alloy films were obtained with increased surface contact area and electrocatalytic active sites which resulted in enhanced glucose-sensing performance. Thus, non-enzymatic glucose sensors based on nanostructured Cu3Al alloy films not only exhibited a high sensitivity of 1680 μA mM-1 cm-2 but also achieved a reliable selectivity to glucose without interference by other species in physiological samples. Consequently, this study sparked the potential for the development of non-enzymatic biosensors for the continuous monitoring of blood glucose levels with high sensitivity and impressive selectivity for glucose molecules.
Collapse
Affiliation(s)
- Yuqing Yin
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| | - Ting Zhang
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| | - Lemeng Feng
- Xiangya Hospital of Central South University Changsha 410008 China
| | - Junhui Ran
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| | - Weitao Song
- Xiangya Hospital of Central South University Changsha 410008 China
| | - Bin Yang
- College of Materials Science and Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
7
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|