1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025:d5na00040h. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Saleem M, Hussain A, Rauf M, Khan SU, Haider S, Hanif M, Rafiq M, Park SH. Ratiometric Fluorescence and Chromogenic Probe for Trace Detection of Selected Transition Metals. J Fluoresc 2025; 35:1841-1853. [PMID: 38457078 DOI: 10.1007/s10895-024-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The design and development of a fluorescence sensor aimed at detecting and quantifying trace amounts of toxic transition metal ions within environmental, biological, and aquatic samples has garnered significant attention from diagnostic and testing laboratories, driven by the imperative to mitigate the health risks associated with these contaminants. In this context, we present the utilization of a heterocyclic symmetrical Schiff Base derivative for the purpose of fluorogenic and chromogenic detection of Co2+, Cu2+ and Hg2+ ions. The characterization of the ligand involved a comprehensive array of techniques, including physical assessments, optical analyses, NMR, FT-IR, and mass spectrometric examinations. The mechanism of ligand-metal complexation was elucidated through the utilization of photophysical parameters and FT-IR spectroscopic analysis, both before and after the interaction between the ligand and the metal salt solution. The pronounced alterations observed in absorption and fluorescence spectra, along with the distinctive chromogenic changes, following treatment with Co2+, Cu2+ and Hg2+, affirm the successful formation of complexes between the ligands and the treated metal ions. Notably, the receptor's complexation response exhibited selectivity towards Co(II), Cu(II), and Hg(II), with no observed chromogenic changes, spectral variations, or band shifts for the various tested metal ions, including Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+ and Al3+. This absence of interaction between these metal ions and the ligand could be attributed to their compact or inadequately conducive conduction bands for complexation with the ligand's structural composition. To quantify the sensor's efficacy, fluorescence titration spectra were employed to determine the detection limits for Co2+, Cu2+ and Hg2+, yielding values of 2.92 × 10-8, 8.91 × 10-8, and 4.39 × 10-3 M, respectively. The Benesi-Hildebrand plots provided association constant values for the ligand-cobalt, ligand-copper, and ligand-mercury complexes as 0.74, 2.52, and 13.89 M-1, respectively.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Muhammad Rauf
- School of Chemistry and Chemical Engineering, Shanxi University, Shanxi, China
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub campus layyah, Faisalabad, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Wang S, Long W, Wei L, Cheng W, Chen H, Yang J, Fu H. Nano effect fluorescence visual sensor based on Au-AgNCs: A novel strategy to identify the origin and growth year of Lilium bulbs. Food Chem 2024; 441:138353. [PMID: 38199097 DOI: 10.1016/j.foodchem.2024.138353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
In this study, we developed a cost-effective fluorescence visual sensor strategy based on gold and silver nanocluster (Au-AgNCs) for the rapid identification of the origins and growth years of Lilium bulbs (LB). Au-AgNCs combined with catechins in LB produce aggregation-induced emission (AIE). The catechin content in LB of different origins and growth years varied, resulting in different fluorescence color responses of the sensor system. Furthermore, the RGB values of the fluorescent color were extracted, and the discriminant effect of visual visualisation was verified using the data-driven soft independent modelling of class analogy (DD-SIMCA) and partial least squares discriminant analysis (PLSDA) models. The results showed that the accuracy of DD-SIMCA for identifying LB origins and PLSDA for growth year identification was 100%. These results indicated that the established strategy could accurately identify the quality of LB, which has great potential for application in the rapid and visual identification of other foods.
Collapse
Affiliation(s)
- Siyu Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wenyu Cheng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
4
|
Katibi KK, Shitu IG, Yunos KFM, Azis RS, Iwar RT, Adamu SB, Umar AM, Adebayo KR. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:492. [PMID: 38691228 DOI: 10.1007/s10661-024-12574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ibrahim Garba Shitu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khairul Faezah Md Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rabaah Syahidah Azis
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Raphael Terungwa Iwar
- Department of Agricultural and Environmental Engineering, College of Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Suleiman Bashir Adamu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221, Nigeria
| | - Kehinde Raheef Adebayo
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria
| |
Collapse
|
5
|
Saleem M, Hussain A, Khan SU, Haider S, Lee KH, Park SH. Symmetrical Ligand's Fabricated Porous Silicon Surface Based Photoluminescence Sensor for Metal Detection and Entrapment. J Fluoresc 2024:10.1007/s10895-024-03697-7. [PMID: 38625572 DOI: 10.1007/s10895-024-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
This study was based on the development of surface-based photoluminescence sensor for metal detection, quantification, and sample purification employing the solid sensory chip having the capability of metal entrapment. The Co(II), Cu(II) and Hg(II) sensitive fluorescence sensor (TP) was first synthesized and characterized its sensing abilities towards tested metal ions by using fluorescence spectral investigation while the synthesis and complexation of the receptor was confirmed by the chromogenic, optical, spectroscopic and spectrometric analysis. Under optical investigation, the ligand solution exhibited substantial chromogenic changes as well as spectral variations upon reacting with copper, cobalt, and mercuric ions, while these behaviors were not seen for the rest of tested metallic ions i.e., Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, and Al3+. These colorimetric alterations and spectral shifting could potentially be employed to detect and quantify these specific metal ions. After the establishment of the ligand's selective complexation ability towards selected metals, it was fabricated over the substituted porous silicon surface (FPS) keeping in view of the development of surface-based photoluminescence sensor (TP-FPS) for the selected metal sensation and entrapment to purify the sample just be putting off the metal entrapped sensory solid chip. Surface characterization and ligand fabrication was inspected by plan and cross sectional electron microscopic investigations, vibrational and electronic spectral analysis. The sensitivity of the ligand (TP) in the solution phase metal discrimination was determined by employing the fluorescence titration analysis of the ligand solution after progressive induction of Co2+, Cu2+, and Hg2+, which afford the detection limit values of 2.14 × 10- 8, 3.47 × 10- 8 and 3.13 × 10- 3, respectively. Concurrently, photoluminescence titration of the surface fabricated sensor (TP-FPS) revealed detection limit values of 3.14 × 10- 9, 7.43 × 10- 9, and 8.21 × 10- 4, respectively, for the selected metal ions.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Ki Hwan Lee
- Kongju National University, Gongju, Chungnam, 314-701, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Jiang H, Zhang Q, Li N, Li Z, Chen L, Yang F, Zhao S, Liu X. All-in-one strategy for the nano-engineering of paper-based bifunctional fluorescent platform for robustly-integrated real-time monitoring of food and drinking-water safety. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133735. [PMID: 38335620 DOI: 10.1016/j.jhazmat.2024.133735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cu2+ contamination and food spoilage raise food and drinking water safety issues, posing a serious threat to human health. Besides, Cu2+ and H2S levels indicate excess Cu2+-caused diseases and protein-containing food spoilage. Herein, a coumarin-containing bifunctional paper-based fluorescent platform integrated with a straightforward smartphone color recognition app is developed by an all-in-one strategy. The proposed fluorescent materials can simultaneously detect Cu2+ and H2S for on-demand food and drinking water safety monitoring at home. Specifically, a coumarin-derived fluorescence sensor (referred to as CMIA) with a low detection limit (0.430 μM) and high-selectivity/-sensitivity for Cu2+ is synthesized through a simple one-step route and then loaded onto commercially used cellulose fiber filter paper to engineer a biomass-based fluorescent material (CMIA-FP). The CMIA-FP offers user-friendly, high-precision, fast-responsive, and real-time visual monitoring of Cu2+. Moreover, CMIA forms a chemically stable complex with Cu2+, loaded onto filter paper to prepare another biomass-based fluorescent platform (CMIA-CU-FP) for visual real-time monitoring of H2S. Based on the exquisite composition design, the proposed dual-function paper-based fluorescent materials equipped with a smartphone color recognition program concurrently realize fast, accurate, and easy real-time monitoring of Cu2+ in drinking water and H2S in chicken breast-/shrimp-spoilage, demonstrating an effective detection strategy for the Cu2+ and H2S monitoring and presenting the new type of biomass-based platforms for concentrated reflection of drinking water and food safety.
Collapse
Affiliation(s)
- Huie Jiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qian Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nihao Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhijian Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fengqian Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Suqiu Zhao
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinhua Liu
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Paknia F, Roostaee M, Isaei E, Mashhoori MS, Sargazi G, Barani M, Amirbeigi A. Role of Metal-Organic Frameworks (MOFs) in treating and diagnosing microbial infections. Int J Biol Macromol 2024; 262:130021. [PMID: 38331063 DOI: 10.1016/j.ijbiomac.2024.130021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.
Collapse
Affiliation(s)
- Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Elham Isaei
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| | - Mahboobeh-Sadat Mashhoori
- Department of Chemistry, Faculty of Science, University of Birjand, P.O.Box 97175-615, Birjand, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran; Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Amodu IO, Olaojotule FA, Ogbogu MN, Olaiya OA, Benjamin I, Adeyinka AS, Louis H. Adsorption and sensor performance of transition metal-decorated zirconium-doped silicon carbide nanotubes for NO 2 gas application: a computational insight. RSC Adv 2024; 14:5351-5369. [PMID: 38348297 PMCID: PMC10859909 DOI: 10.1039/d3ra08796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.
Collapse
Affiliation(s)
- Ismail O Amodu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Mathematics, University of Calabar Calabar Nigeria
| | - Faith A Olaojotule
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | - Miracle N Ogbogu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg Pretoria South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
9
|
Ahmad I, Al-Qattan A, Iqbal MZ, Anas A, Khasawneh MA, Obaidullah AJ, Mahal A, Duan M, Al Zoubi W, Ghadi YY, Al-Zaqri N, Xia C. A systematic review on Nb 2O 5-based photocatalysts: Crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Adv Colloid Interface Sci 2024; 324:103093. [PMID: 38306848 DOI: 10.1016/j.cis.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture-38040, Faisalabad, Pakistan
| | - Ayman Al-Qattan
- Energy and Building Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | | | - Alkhouri Anas
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 15551, United Arab Emirates.
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, People's Republic of China
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
10
|
Jiang X, Mostafa L. Modeling Cu removal from aqueous solution using sawdust based on response surface methodology. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:157. [PMID: 38228806 DOI: 10.1007/s10661-024-12343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Copper (Cu), as one of the heavy metals widely used in industrial and agricultural activities, has a fundamental role in the pollution of water resources. Therefore, removing Cu from the aqueous solutions is considered an important challenge in the purification of water resources. Thus, in this study, sawdust with a diameter of 260-600 μm was used to remove Cu from the aqueous solutions. At first, sawdust was washed using distilled water and dried at laboratory temperature. Cu absorption experiments in closed conditions were performed based on the central composite design (CCD) model and with a range of initial Cu concentrations equal to 1-25 mgl-1. The amount of changes for other variables, including pH, time, and amount of sawdust, was equal to 2-10, 5-185 (min), and 5-25 (gl-1), respectively. After the completion of each test, the remaining Cu concentration in the solution was measured using atomic absorption, and the percentage of Cu removed was determined from the difference between the initial and final concentrations. The results showed that the CCD model has a favorable ability to predict Cu removal from the aqueous solutions (R2=0.90 and RSME=3.34%). Based on the Pareto analysis, contact time, the amount of sawdust, pH, and the Cu concentration had the most significant effect on removing Cu from the solution. Contact time, amount of sawdust, and pH were directly related, and the amount of dissolved Cu was proportional to the removal of Cu from the solution. Therefore, sawdust is desirable as a natural adsorbent, and the removal efficiency of Cu from solutions with low Cu concentration is very high (94%). In this regard, it is advised to use sawdust in the process of targeting Cu and heavy metals due to its low cost and availability.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- School of Political Science and Law, Tibet University, Lhasa, 850000, China.
| | - Loghman Mostafa
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Iraq
| |
Collapse
|