1
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024; 10:e30103. [PMID: 38694088 PMCID: PMC11061748 DOI: 10.1016/j.heliyon.2024.e30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Objective The cafeteria diet (CD), designed as an experimental diet mimicking the obesogenic diet, may contribute to the pathogenesis of inflammatory bowel diseases (IBD). This study delves into the influence of spirulina (SP) on obesity associated with colitis in Wistar rats. Methods The amino acids composition of SP was analyzed using HPLC-FLD. Animals were equally separated into eight groups, each containing seven animals and treated daily for eight weeks as follows: Control diet (SD), cafeteria diet (CD) group, CD + SP (500 mg/kg) and SD + SP. Ulcerative colitis was provoked by rectal injection of acetic acid (AA) (3 % v/v, 5 ml/kg b.w.) on the last day of treatment in the following groups: SD + AA, SD + AA + SP, CD + AA, and CD + AA + SP. Results Findings revealed that UC and/or CD increased the abdominal fat, weights gain, and colons. Moreover, severe colonic alteration, perturbations in the serum metabolic parameters associated with an oxidative stress state in the colonic mucosa, defined by overproduction of reactive oxygen species (ROS) and increased levels of plasma scavenging activity (PSA). Additionally, obesity exacerbated the severity of AA-induced UC promoting inflammation marked by the overexpression of pro-inflammatory cytokines. Significantly, treatment with SP provided notable protection against inflammation severity, reduced histopathological alterations, attenuated lipid peroxidation (MDA), and enhanced antioxidant enzyme activities (CAT, SOD, and GPX) along with non-enzymatic antioxidants (GSH and SH-G). Conclusions Thus, the antioxidant effects and anti-inflammatory proprieties of SP could be attributed to its richness in amino acids, which could potentially mitigate inflammation severity in obese subjects suffering from ulcerative colitis. These results imply that SP hold promise as a therapeutic agent for managing of UC, particularly in individuals with concomitant obesity. Understanding SP's mechanisms of action may lead novel treatment strategies for inflammatory bowel diseases and hyperlipidemia in medical research.
Collapse
Affiliation(s)
- Fatma Arrari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Ala Ayari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Nouha Dakhli
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Chayma Ben Fayala
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Samir Boubaker
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Hichem Sebai
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| |
Collapse
|
2
|
Ji ZH, Xie WY, Zhao PS, Wu HY, Ren WZ, Hu JP, Gao W, Yuan B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients 2023; 15:5055. [PMID: 38140314 PMCID: PMC10746067 DOI: 10.3390/nu15245055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| |
Collapse
|
3
|
Faqerah N, Walker D, Gerasimidis K. Review article: The complex interplay between diet and Escherichia coli in inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:984-1004. [PMID: 37771255 DOI: 10.1111/apt.17720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Although no causative microbe has been yet identified or successfully targeted in the treatment of inflammatory bowel disease (IBD), the role of Escherichia coli in the pathogenesis of Crohn's disease has attracted considerable interest. AIM In this review, we present a literature overview of the interactions between diet and E. coli and other Proteobacteria in the aetiology, outcomes and management of IBD and suggest future research directions. METHODS An extensive literature search was performed to identify in vitro studies and research in animal models that explored mechanisms by which dietary components can interact with E. coli or Proteobacteria to initiate or propagate gut inflammation. We also explored the effect diet and dietary therapies have on the levels of E. coli or Proteobacteria in patients with IBD. RESULTS Preclinical data suggest that the Western diet and its components influence the abundance, colonisation and phenotypic behaviour of E. coli in the gut, which may in turn initiate or contribute to gut inflammation. In contrast, the Mediterranean diet and specific dietary fibres may abrogate these effects and protect from inflammation. There are limited data from clinical trials, mostly from patients with Crohn's disease during treatment with exclusive enteral nutrition, with findings often challenging observations from preclinical research. Data from patients with ulcerative colitis are sparse. CONCLUSIONS Preclinical and some clinical trial data suggest that E. coli and other Proteobacteria interact with certain dietary components to promote gut inflammation. Well-designed clinical trials are required before dietary recommendations for disease management can be made.
Collapse
Affiliation(s)
- Nojoud Faqerah
- Human Nutrition, School of Medicine, Dentistry and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Microbiology, Rabigh Medical College, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Daniel Walker
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
4
|
Chen K, Luo H, Li Y, Han X, Gao C, Wang N, Lu F, Wang H. Lactobacillus paracasei TK1501 fermented soybeans alleviate dextran sulfate sodium-induced colitis by regulating intestinal cell function. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37031963 DOI: 10.1002/jsfa.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Probiotic food provide health benefits by regulating intestinal floras via live bacteria, but the shelf life is short and the preservation condition is demanding due to the bacteria being fragile. Owing to these problems, we have tried to find a fermented food that is helpful for inflammatory bowel disease treatment but independent of live bacteria. In addition, the mechanisms of fermented food were investigated. Dextran sulfate sodium was used to model inflammatory bowel disease in mice, and Lactobacillus paracasei TK1501 fermented soybeans and their metabolites were used to treat inflammatory bowel disease. RESULTS In this study, TK1501 fermented soybean alleviated colitis. However, the efficacy was associated with bacterial metabolites but not live or dead bacteria. Compositional analysis of soybean before and after fermentation shows that soy carbohydrates were used for bacteria growth and produced functional substances. Further, we display the main active ingredient was lipoteichoic acid and peptidoglycan, because lipoteichoic acid reduced the colonic macrophage and peptidoglycan may increase the mucin-2 expression. A cell experiment displayed that lipoteichoic acid could enhance the phagocytosis of macrophages. CONCLUSION In general, TK1501 fermented soybean alleviating colitis is dependent on metabolites of TK1501, particularly lipoteichoic acid and peptidoglycan. The fermented food may have a long shelf life and lax storage condition. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaiyang Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Honglian Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yaqi Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuemei Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Research and Development Department, Tianjin InnoOrigin Biological Technology Co., Ltd., Tianjin, China
| | - Congcong Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ningyu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haikuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Chen K, Man S, Wang H, Gao C, Li X, Liu L, Wang H, Wang Y, Lu F. Dysregulation of intestinal flora: excess prepackaged soluble fibers damage the mucus layer and induce intestinal inflammation. Food Funct 2022; 13:8558-8571. [PMID: 35881465 DOI: 10.1039/d2fo01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soluble fiber is commonly used as a dietary supplement to improve intestinal flora, and many prepackaged products are sold in the market. However, whether these prepared soluble fibers are harmless for intestinal flora has not been systematically evaluated. Here, we assessed the dose-effect of fructooligosaccharides (FOSs) on obesity and intestinal flora using a mouse model. Gavage of low- and medium-dose FOS improved the microbiota in high-fat diet fed mice, but high-dose FOS leads to intestinal flatulence, diarrhea and flora disorders, including an increase in Akkermansia muciniphila and Clostridium difficile, which disrupt the mucus barrier and cause intestinal inflammation. Besides, a high dose of xylooligosaccharide by gavage induces symptoms similar to those of FOS in mice. These adverse effects can be alleviated by regulating intestinal flora. In addition, we experimentally proved that supplementary probiotics protect against the negative effects of FOS in obese mice. Therefore, prepackaged soluble fiber supplements need to be taken with caution, and excessive consumption of soluble fibers results in intestinal dysfunction and even induces intestinal inflammation. Combining probiotics and soluble fiber can be considered if necessary.
Collapse
Affiliation(s)
- Kaiyang Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Hongbin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Congcong Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Liying Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Haikuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|