1
|
Ran S, Li W, Yang Z, Zhang J, Chen Z, Jia G, Lin Q, Zeng HC, Yang Y, Zhang Z, Gao Y, Chen L, Wei S, Tian F, Lin H, Chen Y. In vitro and in vivo evidence on the association of pregnant PM 2.5 exposure with preterm birth and potential role of placental miRNA-21 regulating TLR4/NF-κB and activating NLRP3 inflammasome. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138376. [PMID: 40288320 DOI: 10.1016/j.jhazmat.2025.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Ambient PM2.5 has been associated with preterm birth (PTB); however, the mechanism has not been elucidated. A birth cohort study, pregnant mouse models, and HTR-8/SVneo cells were conducted to achieve the study objectives. We observed 9833 (6.6 %) PTBs among the participants, the median gestational week (GW) is 39.25. Cox model and accelerated failure time model revealed that each 10 μg/m3 increase in PM2.5 was associated with an elevated risk of PTB during the entirety of pregnancy (hazard ratio and 95 % confidence interval [HR 95 %CI) was 1.15 (1.07, 1.24)], and reduced gestational week by 1.6 % (ETR: 0.984, 95 % CI: 0.976-0.992). In animal model, we found a shorter gestational day in PM2.5 exposure group than filtered air group, miRNA-sequencing analysis revealed that miRNA-21a-5p was significantly down-regulated in the PM2.5 group (p < 0.05), GO and KEGG analysis indicated that TLR4/NF-κB was involved in the process of PM2.5 shortening pregnancy. Western blot showed that PM2.5 exposure increased TLR4, NF-κB, and NLRP3 inflammasome in vivo and vitro. BAY11-7082 and miRNA-21 mimic inhibited the PM2.5-activated TLR4/NF-κB signaling pathway and NLRP3 inflammasome. This study provides evidence on the potential molecular mechanism of miRNA-21-5p/TLR4/NF-κB signaling pathway in PM2.5-induced inflammatory response leading to PTB through NLRP3 inflammasome.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zijun Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan 528315, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yonggui Gao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yuming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Xu H, Li X, Liu K, Huang P, Liu XJ. PM2.5 Promotes Macrophage-Mediated Inflammatory Response Through Airway Epithelial Cell-Derived Exosomal miR-155-5p. J Inflamm Res 2024; 17:8555-8567. [PMID: 39539727 PMCID: PMC11559224 DOI: 10.2147/jir.s482509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Background Airway epithelial cells (AECs) and alveolar macrophages are involved in airway inflammation. The direct effects of atmospheric fine-particulate-matter (PM2.5) on airway cells, such as AECs and alveolar macrophages, have been widely investigated, but the effect of cell-cell interaction on inflammatory response remains unclear. Exosomes play a crucial role in intercellular communication. However, the cellular interaction of exosomes in PM2.5-induced airway inflammation is unclear. Methods The PM2.5-induced human bronchial epithelial (BEAS-2B) cells and phorbol 12-myristate 13-acetate-induced macrophages (Mφ) were co-cultured and then the expression of IL-6, IL-1β, TNF-α and miRNA-155-5p were detected. Exosomes from PM2.5-exposed BEAS-2B cells were then co-cultured with Mφ to detect the expression of miR-155-5p and inflammatory cytokines, as well as cytokine signaling inhibitor-1 (SOCS1)/NFκB, and to detect the effect of the exosome inhibitor GW4869. Results After the co-culture of PM2.5-induced BEAS-2B cells and Mφ, the expression of Mφ-derived IL-6, IL-1β, and TNF-α, as well as miRNA-155-5p were upregulated. The expression of miRNA-155-5p was upregulated in BEAS-2B and BEAS-2B cell-derived exosomes after exposure to PM2.5. Furthermore, co-culturing exosomes derived from PM2.5-exposed BEAS-2B cells with Mφ, upregulated miR-155-5p and inflammatory cytokines, decreased cytokine signaling inhibitor-1 (SOCS1) expression, and activated NF-κB. In addition, adding exosome inhibitor GW4869 to PM2.5-interfered BEAS-2B cells co-culture with Mφ downregulated miRNA-155-5p expression, inhibited NF-κB, and reduced the levels of inflammatory factors. Conclusion PM2.5 promotes Mφ inflammation by upregulating miRNA-155-5P in exosomes obtained from BEAS-2B cells through miR-155-5P/SOCS1/NF-κB pathway. Exosomal miRNAs mediate cellular communication between BEAS-2B cells and Mφ, which may be a new mechanism of PM2.5-stimulated pulmonary inflammatory response.
Collapse
Affiliation(s)
- Hui Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Kai Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Ping Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xiao-Ju Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
3
|
Wang J, Wang M, Zhang C, Li W, Zhang T, Zhou Y, Flavel M, Xi Y, Li H, Liu X. Protective effects of sugarcane polyphenol against UV-B-induced photoaging in Balb/c mouse skin: Antioxidant, anti-inflammatory, and anti-glycosylation Effects. J Food Sci 2024; 89:3048-3063. [PMID: 38563092 DOI: 10.1111/1750-3841.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1β, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.
Collapse
Affiliation(s)
- Junru Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Min Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | | | - Wenhui Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Yanv Zhou
- The Product Makers Co., Ltd., Shanghai, China
| | - Matthew Flavel
- The Product Makers Co., Ltd., Shanghai, China
- Department of Microbiology, Anatomy, Physiology, Pharmacology, La Trobe University, Bundoora, Australia
| | - Yu Xi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Chen X, Liu W, Zhang J, Li H, Liu X. Selenium-enriched peptides identified from selenium-enriched soybean protein hydrolysate: protective effects against heat damage in Caco-2 cells. Food Funct 2023; 14:7882-7896. [PMID: 37489104 DOI: 10.1039/d3fo01103h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Our previous study evaluated the antioxidant and anti-inflammatory activities of selenium-enriched soybean peptides (SePPs) in vivo. In this study, we purified SePPs via gel filtration chromatography and obtained five fractions (F1, F2, F3, F4 and F5), among which F3 displayed the highest antioxidant and anti-inflammatory activities. Nineteen selenium-enriched peptides were identified in F3 by mass spectrometry. Two selenium-enriched peptides with sequences ESeCQIQKL (Sep-1) and SELRSPKSeC (Sep-2) were selected for synthesis based on their score and the number of hydrophobic amino acids, acidic and basic amino acids. Both Sep-1 and Sep-2 exhibited preventive effects on the heat stress-induced impairment of intestinal epithelial cell integrity, oxidative stress and inflammatory responses in a Caco-2 cell model. Pretreatment of the cells with Sep-1 or Sep-2 for 24 h reduced intracellular reactive oxygen species (ROS) generation, prevented the disruption of tight junction (TJ) proteins, and decreased paracellular permeability. Western blot results showed that Sep-1 and Sep-2 could improve the abnormal expressions of Nrf2, Keap1, NLRP3, caspase-1 and ASC/TMS1, thereby enhancing the glutathione (GSH) redox system and reducing IL-1β and IL-18 concentrations. Sep-1 activated the Nrf2-Keap1 signaling pathway significantly more than Sep-2. Molecular docking results indicated that Sep-1 and Sep-2 are both bound to Keap1 and NLRP3 in the form of hydrogen bonds, hydrophobic interactions and salt bridges, which interferes with Nrf2 and NLRP3 signaling. Molecular dynamics simulations suggested that more hydrogen bonds were formed during the resultant process of Sep-1 with Keap1, and the compactness and stability of the complex structure were better than those of Sep-2. These findings confirm the value of both Sep-1 and Sep-2 in the development of dietary supplements as potential alternatives for heat damage and related disease prevention.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlu Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|