1
|
Armeli F, Beccaccioli M, Prencipe SA, Schifano E, Tufi D, Brasili E, Cottarelli A, Giampaoli O, Mengoni B, Miccheli A, Pinto A, Sciubba F, Uccelletti D, Businaro R, Vinci G, Reverberi M, De Giusti M. Bioactive molecules in wheat "Senatore Cappelli" food chain: Extraction, analysis, processing, and beneficial properties. Food Chem Toxicol 2025; 201:115475. [PMID: 40288518 DOI: 10.1016/j.fct.2025.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Ancient grains, once forgotten due to the dominance of high-yield modern crops, are making a comeback due to concerns over biodiversity loss and global food challenges. This study examines the nutritional composition, safety, and health benefits of Senatore Cappelli, an ancient Italian durum wheat variety (SCW), highlighting its potential as a functional food. Using a multi-method approach, SCW was analyzed across four food chain stages (seeds, flour, pasta, and chaff) for compositional changes, phytochemical content, and safety. The safety of raw material was assessed by determination of biogenic amines, pesticides, mycotoxins and pathogenic microorganisms. The chemical profile detected by NMR spectroscopy revealed the presence of bioactive molecules such as phenolic acids and carotenoids in the case of chaff. The toxicity of ethanolic extracts was evaluated using in vitro assays on murine BV-2 microglial cells and in vivo assays on Caenorhabditis elegans animal model. No cytotoxic effects were detected at concentrations up to 250 ng/mL for chaff extract and 1000 ng/mL for seed, flour, and pasta extracts. Additionally, SCW extracts extended the lifespan of C. elegans, indicating potential anti-aging and health-promoting properties. These results position SCW as a valuable resource for enhancing bioactive compounds, supporting its reintroduction into modern diets and its use in functional food development.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | | | - Emily Schifano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
| | - Daniela Tufi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Alessia Cottarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Daniela Uccelletti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Giuliana Vinci
- Department of Management, Sapienza University of Rome, Rome, Italy.
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Maria De Giusti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy.
| |
Collapse
|
2
|
Hu M, Cheng N, Liu R, Shao L, Yang R, Du S, Chu L, Wang W, Wang H. Red Ginseng Aqueous Extract Superior to White Ginseng Exhibited Anti-Aging Property Through IIS Signaling Pathway in Caenorhabditis elegans. Chem Biodivers 2025:e202500604. [PMID: 40226869 DOI: 10.1002/cbdv.202500604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/15/2025]
Abstract
The traditional Chinese herbal medicine Panax ginseng can optimize physical health and is anticipated to be a valuable resource for investigating anti-aging therapies. This study investigated the anti-aging effects of red ginseng aqueous extract (RG) and white ginseng aqueous extract (WG). Network pharmacology forecasted that the key mechanisms of anti-aging in white and red ginsengs were the PI3K-Akt and IIS signaling pathways. Experiments conducted on Caenorhabditis elegans (C. elegans) showed that 5 mg/mL WG and RG notably prolonged lifespan and improved stress resistance. The qPCR analysis revealed that changes in upstream genes activated downstream genes in the IIS pathway. Furthermore, forward and reverse validation indicated that WG and RG acted through the IIS pathway in promoting longevity. RG exhibited superior anti-aging effects compared to WG at the same concentration. This might be attributed to the fact that RG contained more reducing sugars, polyphenols, melanoidins, total saponin content, and especially the conversion of ginsenosides. Molecular docking showed that ginsenosides interacted with the key protein DAF-2, with ginsenosides Rg3, Rg5, Rh4, Rf, and Rc binding more strongly than ginsenosides Rb1, Rb2, and Rd. Overall, RG possessed different active ingredients compared to WG and showed superior results in improving aging in C. elegans.
Collapse
Affiliation(s)
- Mengxue Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Ningning Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Liangyong Shao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Ran Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Siyu Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Lulu Chu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|
3
|
Gao T, Yan N, Pu Y, Zhang Z, Duan Z, Tang Z, Huang D, Chen Y, Yuan S, Yan X, Yuan M. Ginger leaf polyphenols mitigate β-amyloid toxicity via JNK/FOXO pathway activation in Caenorhabditis elegans. Food Funct 2025; 16:1072-1085. [PMID: 39829385 DOI: 10.1039/d4fo03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
β-Amyloid (Aβ) aggregation is the major pathological feature of Alzheimer's disease (AD), resulting in oxidative stress and further exacerbating Aβ aggregation. Ginger leaf polyphenols (GLP) have been found to possess antioxidant activity, evidencing their potential in addressing AD. GLP is mainly composed of 12 polyphenols, 8 organic acids, and 6 glycosides, of which polyphenols are predominantly composed of apigenin, kaempferol, and quercetin derivatives. Moreover, GLP alleviates reproductive toxicity, longevity toxicity, and neurotoxicity induced by Aβ via regulating the antioxidase system in Caenorhabditis elegans. As shown by the network pharmacology results, GLP might activate the JNK/Foxo signaling pathway to regulate the antioxidase system, which was evidenced by the up-regulation of gene expression levels of jnk-1, daf-16, sod-3, and hsp-16.2. Overall, GLP might be a potential antioxidant for combating AD.
Collapse
Affiliation(s)
- Tao Gao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Ningning Yan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaying Pu
- Yaan People's Hospital, Yaan, 625099, China.
| | - Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Daojian Huang
- Dazhu County Scientific and Technical Information Institute, Dazhou, 635100, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
4
|
Wang J, Zhu D, Cui H, Xu Y, Shang S, Miao Y, Xu Z, Li R. Molecular mechanism of culinary herb Artemisia argyi in promoting lifespan and stress tolerance. NPJ Sci Food 2024; 8:111. [PMID: 39719452 DOI: 10.1038/s41538-024-00358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Artemisia argyi Lévl. et Vant. (A. argyi) leaf possesses various health promoting functions contributed by its main bioactive flavonoids. In this study, the anti-aging effect and mechanism of Artemisia argyi leaf extract (AALE) were identified using Caenorhabditis elegans (C. elegans) as a model. The results showed that the AALE promoted the lifespan and stress resistance of C. elegans. It was found that the AALE boosted the expression of oxidative stress-related proteins by regulating the insulin/ IGF-1 signaling (IIS) pathway, which then activated the transcription factors DAF-16/FOXO. The results of RNA-sequence analysis indicated that the changes of genes in nematodes treated with AALE were associated with the responses against oxidative stress, cell maturation, and immune reaction, and stress. The positive results suggest that Artemisia argyi leaf could have the robust benefits for improving healthy aging as well as preventing aging-related diseases in the human body.
Collapse
Affiliation(s)
- Jinsong Wang
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Deyan Zhu
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China
| | - Hailin Cui
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Yan Xu
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Shuyou Shang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanxin Miao
- Characteristic food function mining and comprehensive utilization research center, Jingchu University of Technology, Jingmen, China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, USA.
| | - Rong Li
- Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
5
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
6
|
Liu D, Song Y, Zheng B, Xie J, Chen Y, Xie J, Chen X, Yu Q. EGCG Alleviates the Aging Toxicity Induced by 3-MCPD via IIS Pathway in Caenorhabditis elegans with Abnormal Reproduction and Heat Shock Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14315-14325. [PMID: 38847877 DOI: 10.1021/acs.jafc.3c09583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the mitigation effect of epigallocatechin gallate (EGCG) on aging induced by 3-monochloropropane-1,2-diol (3-MCPD) in Caenorhabditis elegans, evaluate health indicators during the process, and reveal the underlying mechanism through transcriptomics and identification of mutants. The results showed that EGCG alleviated the declined fertility, shortened lifespan, reduced body size, weakened movement, increased reactive oxygen species and lipofuscin, and damaged antioxidative stress response and excessive heat shock proteins caused by 3-MCPD. Transcriptomics study indicated that treatment with 3-MCPD and EGCG altered gene expression, and gene mutants confirmed the involvement of insulin/IGF-1 signaling pathway in mediating the process that EGCG alleviated the aging toxicity induced by 3-MCPD. The study showed that EGCG alleviated the aging toxicity induced by 3-MCPD.
Collapse
Affiliation(s)
- Danyang Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yiming Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xinyi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
7
|
Li R, Yi Q, Wang J, Miao Y, Chen Q, Xu Y, Tao M. Paeonol promotes longevity and fitness in Caenorhabditis elegans through activating the DAF-16/FOXO and SKN-1/Nrf2 transcription factors. Biomed Pharmacother 2024; 173:116368. [PMID: 38471269 DOI: 10.1016/j.biopha.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Paeonol, as one of the most abundant plant-derived polyphenols, has multiple bioactivities including anti-inflammatory, anti-tumor, and anti-cardiovascular diseases. Nevertheless, the anti-aging effects and related mechanisms of paeonol are rarely reported. In this study, we found that paeonol significantly prolonged the mean lifespan of Caenorhabditis elegans (C. elegans) by 28.49% at a dose of 200 μM. Moreover, paeonol promoted the health of C. elegans by increasing the body bending and pharyngeal pumping rates and reducing the lipofuscin accumulation level. Meanwhile, paeonol induced the expression of stress-related genes or proteins by activating the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, which in turn enhanced oxidative and thermal stress tolerance. The mechanism behind the anti-aging effect of paeonol occurred by down-regulating the insulin/IGF-1 signaling (IIS) pathway. Our findings shed new light on the application of paeonol for longevity promotion and human health.
Collapse
Affiliation(s)
- Rong Li
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China
| | - Qingping Yi
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China
| | - Jinsong Wang
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China
| | - Yuanxin Miao
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China
| | - Qingchan Chen
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China
| | - Yan Xu
- College of Bioengineering/Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, People's Republic of China.
| | - Mingfang Tao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Agricultural Quality Standards and Detection Technology, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
8
|
Navarro-Hortal M, Romero-Márquez JM, López-Bascón MA, Sánchez-González C, Xiao J, Sumalla-Cano S, Battino M, Forbes-Hernández TY, Quiles JL. In Vitro and In Vivo Insights into a Broccoli Byproduct as a Healthy Ingredient for the Management of Alzheimer's Disease and Aging through Redox Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5197-5211. [PMID: 38477041 PMCID: PMC10941188 DOI: 10.1021/acs.jafc.3c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Broccoli has gained popularity as a highly consumed vegetable due to its nutritional and health properties. This study aimed to evaluate the composition profile and the antioxidant capacity of a hydrophilic extract derived from broccoli byproducts, as well as its influence on redox biology, Alzheimer's disease markers, and aging in the Caenorhabditis elegans model. The presence of glucosinolate was observed and antioxidant capacity was demonstrated both in vitro and in vivo. The in vitro acetylcholinesterase inhibitory capacity was quantified, and the treatment ameliorated the amyloid-β- and tau-induced proteotoxicity in transgenic strains via SOD-3 and SKN-1, respectively, and HSP-16.2 for both parameters. Furthermore, a preliminary study on aging indicated that the extract effectively reduced reactive oxygen species levels in aged worms and extended their lifespan. Utilizing broccoli byproducts for nutraceutical or functional foods could manage vegetable processing waste, enhancing productivity and sustainability while providing significant health benefits.
Collapse
Affiliation(s)
- María
D. Navarro-Hortal
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - Jose M. Romero-Márquez
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - M. Asunción López-Bascón
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Sport
and Health Research Centre, University of
Granada, C/Menéndez
Pelayo 32, 18016 Granada, Spain
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Sandra Sumalla-Cano
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Health, Nutrition and Sport, Iberoamerican
International University, Campeche 24560, Mexico
| | - Maurizio Battino
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60131 Ancona, Italy
- International
Joint Research Laboratory of Intelligent Agriculture and Agri-Products
Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y. Forbes-Hernández
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L. Quiles
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
9
|
Tang S, Cheng Y, Xu T, Wu T, Pan S, Xu X. Hypoglycemic effect of Lactobacillus plantarum-fermented mulberry pomace extract in vitro and in Caenorhabditis elegans. Food Funct 2023; 14:9253-9264. [PMID: 37750031 DOI: 10.1039/d3fo02386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Mulberry pomace is rich in phytochemicals, but there are few studies on its utilization as a by-product. Natural foods containing phytochemicals can alleviate the toxic effects of excessive glucose intake. In this study, we investigated the protective effect of Lactobacillus plantarum-fermented mulberry pomace extract (FMPE) under hyperglycemic conditions. The phenolic compounds and α-glucosidase inhibition of FMPE were determined using UPLC-MS and chemical models. Furthermore, Caenorhabditis elegans was a model system to study the hypoglycemic effects. The results showed that the polyphenolics and α-glucosidase inhibition were improved during fermentation. Three phenolic components (cyanidin, 2,4,6-trihydroxybenzaldehyde, and taxifolin) were important variables for α-glucosidase inhibition. FMPE and the three key compound treatments reduced the glucose content and reactive oxygen species (ROS) level in Caenorhabditis elegans. The protective mechanism occurred by activating DAF-16/FOXO and SKN-1/Nrf2. This study suggests that Lactobacillus plantarum-fermentation was a potential way to utilize mulberry pomace polyphenols as hypoglycemic food ingredients.
Collapse
Affiliation(s)
- Shuxin Tang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Wang G, Song B, Jia X, Yin H, Li R, Liu X, Chen J, Zhang J, Wang Z, Zhong S. Ceramides from Sea Red Rice Bran Improve Health Indicators and Increase Stress Resistance of Caenorhabditis elegans through Insulin/IGF-1 Signaling (IIS) Pathway and JNK-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15080-15094. [PMID: 36417897 DOI: 10.1021/acs.jafc.2c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiaging effects of sea red rice bran in vivo, a new saline-tolerant sea rice byproduct containing high levels of ceramides (Cers), remain unknown. This study aimed to explore the antiaging effects exerted by Cers from sea red rice bran on Caenorhabditis elegans, assess its health indicators as well as tolerance, and then reveal the mechanism of action of Cers in prolonging the mean life span through genetic studies. The results indicated that the mean life span of Cers-treated C. elegans were dose-dependent in the range of 0.10-0.50 mg/mL. Additionally, Cers improved nematode motility, reduced lipofuscin accumulation, and enhanced resistance to heat stress and antioxidant enzyme activity. Genetic studies showed that Cers treatment had altered nematode gene expression. In addition, insulin/IGF-1 and jnk-1/mitogen-activated protein kinase (MAPK) signaling pathways successfully demonstrated the longevity effects of Cers intake. In short, these results suggest that Cers enhance the resistance of C. elegans and prolong its life span.
Collapse
Affiliation(s)
- Gang Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huan Yin
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jieliang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|