1
|
Wang Y, Xie Z, Du L, Wang Q, Zhang L, Wu Y, Han J. Heat-killed Lacticaseibacillus paracasei 6235 is more effective than live on DSS-induced colitis via modulation of intestinal microbiota and MAPK/NF-κB signaling pathways. Food Funct 2025; 16:2247-2261. [PMID: 39569739 DOI: 10.1039/d4fo04873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This study compared the protective effects of both live Lacticaseibacillus paracasei 6235 (LLP 6235) and heat-killed Lacticaseibacillus paracasei 6235 (HK-LP 6235) on ulcerative colitis. Using a dextran sulfate sodium (DSS)-induced colitis mouse model, we evaluated physiological state, colon tissue integrity, inflammatory factors, tight junction (TJ) proteins, and intestinal microbiota variations. The findings demonstrated that both LLP 6235 and HK-LP 6235 have the capacity to mitigate colitis damage, enhance TJ protein levels, and restore colon morphology. In addition, these interventions modulated the intestinal inflammatory response by inhibiting pro-inflammatory factors and upregulating anti-inflammatory factors through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Moreover, treatment with LLP 6235 and HK-LP 6235 significantly altered intestinal microbiota diversity, increased the relative abundance of beneficial bacteria, and regulated the short-chain fatty acid (SCFA) levels. Spearman correlation analysis revealed a strong association between TJ proteins, SCFAs, intestinal microbiota, and inflammatory response, suggesting that LLP 6235 and HK-LP 6235 may provide an effective approach to colitis prevention. In conclusion, LLP 6235 and HK-LP 6235 have similar abilities; furthermore, HK-LP 6235 modulated the intestinal microbiota through lipid metabolic pathways, resulting in a greater improvement. Moreover, considering the high stability and safety of prebiotics and their wide applicability, HK-LP 6235 is recommended for use as a modulator of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- LS CORPORATION CO., LTD, Tokyo, 0611374, Japan
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunzhou Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
2
|
Su R, Ma Q, Zhao Y, He Y, Yu N, Lei Y, Wang Z, Chen J, Gao T. Deciphering the Pharmacological Mechanism of Compound Purpura Decoction in Treating Henoch-Schonlein Purpura by Network Pharmacology, Molecular Docking and Experimental Validation. Chem Biodivers 2025:e202402793. [PMID: 40045447 DOI: 10.1002/cbdv.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Henoch-Schonlein purpura (HSP) is an immunoglobulin A (IgA)-mediated systemic vasculitis that frequently develops in children and may progress to serious complications. Compound purpura decoction (CPD), a classical herbal combination, exerts favourable effects on the clinical symptoms and prognosis of HSP; however, the underlying molecular mechanism remains unclear. First, high-performance liquid chromatography analysis identified five bioactive components in CPD, including protocatechuic acid, chlorogenic acid, mangiferin, baicalin and buddleoside, with contents of 0.011 ± 0.02, 0.577 ± 0.33, 0.150 ± 0.05, 1.132 ± 0.23 and 0.369 ± 0.23 mg/g, respectively. Additionally, we established an animal model of allergic purpura to evaluate the therapeutic effects of CPD on HSP. CPD effectively alleviated renal and cutaneous vasculitis and reduced IgA deposition. CPD could regulate the Treg/Th17 cell balance, decrease the levels of the proinflammatory factors interleukin-6 and tumour necrosis factor-α, and suppress the expression of C3 and C5 (p < 0.05). Network pharmacology analysis suggested that the mechanism of CPD in HSP treatment mainly involved epidermal growth factor receptor (EGFR)-related targets and pathways, followed by molecular docking confirming strong binding affinity between EGFR and the bioactive components (binding energy< -4.25 kcal/mol). Real-time quantitative polymerase chain reaction and western blot showed that CPD suppressed the activation of the EGFR/extracellular signal-regulated kinase (ERK) signalling pathway (p < 0.05), which could be associated with the inhibition of complement system activation. This study provides a new perspective for understanding the pathogenesis and treatment of HSP.
Collapse
Affiliation(s)
- Rong Su
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Quanwu Ma
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuna Zhao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanping He
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaya Lei
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ziyan Wang
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Chen Y, Ho CT, Zhang X. The regulatory mechanism of intermittent fasting and probiotics on cognitive function by the microbiota-gut-brain axis. J Food Sci 2025; 90:e70132. [PMID: 40091756 DOI: 10.1111/1750-3841.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Intermittent fasting (IF) is an eating pattern that promotes health and cognitive improvement through periodic fasting and eating. It has been shown to enhance neuroplasticity and reduce oxidative stress and inflammation. Recent studies have demonstrated that probiotic supplementation enhances cognitive performance by modulating gut microbiota composition and increasing short-chain fatty acid production, which in turn promotes neurogenesis and synaptic plasticity. The microbiota-gut-brain axis (MGBA) is the communication bridge between gut microbiota and the brain, influencing cognitive function through the immune, endocrine, and nervous systems. The combination of probiotics and IF may exert complementary effects on cognitive function, with IF enhancing gut microbial diversity and metabolic efficiency, while probiotics further modulate gut barrier integrity and neurotransmitter synthesis. This review critically examines the interplay between probiotics and IF on cognitive function via the MGBA, identifying key mechanisms and potential therapeutic strategies that remain underexplored in current research.
Collapse
Affiliation(s)
- Yili Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
4
|
Xue L, Huan Y, Chang Y, Wang Y, Tang Q. Investigating the Alleviating Effect of Fucoidan from Apostichopus japonicus on Ulcerative Colitis by Mice Experiments and In Vitro Simulation of Human Fecal Fermentation. Foods 2025; 14:574. [PMID: 40002018 PMCID: PMC11853958 DOI: 10.3390/foods14040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Fucoidan from Apostichopus japonicus (Aj-FUC) is a marine polysaccharide extracted from the high-quality sea cucumber, which has received increasing attention for its multiple biological activities. METHODS In this study, Aj-FUC was extracted, and its basic structure was characterized, while the alleviating efficacy of Aj-FUC on ulcerative colitis (UC) was investigated using C57BL/6 mice. The improvement of Aj-FUC on the fecal gut microbiota in healthy individuals and inflammatory bowel disease (IBD) patients was explored using in vitro simulated fecal fermentation. RESULTS The results reflected that Aj-FUC treatment attenuated the histopathological damage associated with colitis, reduced the levels of IL-6, IL-1β, and TNF-α. Aj-FUC treatment also upregulated the expression of ZO-1 and occludin, thereby aiding in the repair of the intestinal barrier. Furthermore, Aj-FUC enhanced the levels of short-chain fatty acids (SCFAs) and helped restore the balance of gut microbiota, particularly by increasing the relative abundance of Akkermansia. In vitro simulation of fecal fermentation showed that Aj-FUC could modulate the gut microbiota of IBD patients and increase the relative abundance of beneficial bacteria. CONCLUSIONS In conclusion, this study highlights that Aj-FUC can alleviate UC by modulating the levels of inflammatory factors, improving the intestinal barrier, and regulating the intestinal flora in a variety of ways.
Collapse
Affiliation(s)
| | | | | | | | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (L.X.); (Y.H.); (Y.C.); (Y.W.)
| |
Collapse
|
5
|
Li Y, Shao S, Zhou Y, Wang Y, Zheng W, Wang H, Wang M, Jin K, Zou H, Mou X. Oral administration of Folium Artemisiae Argyi-derived exosome-like nanovesicles can improve ulcerative colitis by regulating intestinal microorganisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156376. [PMID: 39813847 DOI: 10.1016/j.phymed.2025.156376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed. PURPOSE The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis. METHODS We established an in vivo model of acute UC in mice and an in vitro inflammatory model using HT-29 human colorectal cancer cells. To evaluate the therapeutic effect of FAELNs on UC, we adopted various proxies, including changes in body weight and disease activity index (DAI) of mice, and measurement of colon length. The concentrations of myeloperoxide, interleukin (IL-1β), IL-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interferon-gamma in sera of mice were detected by ELISA. Immunohistochemistry, hematoxylin and eosin staining, and Alyssin blue staining were performed. The effect of HT-29 cells on oxidative stress was detected using an active oxygen probe, diacetyldichlorofluorescein, and flow cytometry. Western blotting was performed to detect the expression levels of Bax and Bcl-2 in HT-29 cells treated with FAELNs. The effects of FAELNs on IL-6 and IL-1β were detected by fluorescence quantitative PCR. Fecal 16S bacteria were detected, and the role of FAELNs was verified by α diversity and β diversity analyses, principal component analysis, species distribution, and function prediction. For microRNA sequencing of FAELNs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. To detect the metabolic and lipid groups of FAELNs, the components were identified and a pharmacological network was constructed to explore the related mechanisms and diseases. RESULTS FAELNs effectively alleviated the pathogenesis of UC induced by dextran sodium sulfate in animal models, restoring the integrity of the intestinal barrier and reversing an imbalance of the intestinal microbiota. CONCLUSION Our findings demonstrate the therapeutic potential of FAELNs in UC management, highlighting their scalability for mass production and encouraging prospects for clinical transformation.
Collapse
Affiliation(s)
- Yishu Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Su Shao
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, PR China
| | - Yuanhao Zhou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yuanyuan Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Wenjie Zheng
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, PR China
| | - Meixia Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, PR China; EVitai Bio (Hangzhou) Co. Ltd, Hangzhou 310056, PR China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, PR China.
| | - Hai Zou
- Department of Critical Care, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
6
|
Du M, Liu X, Ji X, Wang Y, Liu X, Zhao C, Jin E, Gu Y, Wang H, Zhang F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front Nutr 2025; 11:1494348. [PMID: 39877539 PMCID: PMC11772193 DOI: 10.3389/fnut.2024.1494348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Enterotoxic Escherichia coli (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance. Berberine, categorized as a substance with similarities in "medicine and food," has been used in China for hundreds of years to treat gastrointestinal disorders and bacteria-induced diarrhea. This study investigated the preventive effect of dietary berberine on the intestinal mucosal barrier induced by ETEC and the microbial community within the intestines of weaned piglets. Methods Twenty-four piglets were randomly divided into four groups. Piglets were administered either a standard diet or a standard diet supplemented with berberine at concentrations of 0.05 and 0.1%. and orally administered ETEC or saline. Results Dietary supplementation with berberine reduced diamine oxidase, d-lactate, and endotoxin levels in piglets infected with ETEC (P < 0.05). Berberine increased jejunal villus height, villus/crypt ratio, mucosal thickness (P < 0.05), and goblet cell numbers in the villi and crypts (P < 0.05). Furthermore, berberine increased the optical density of mucin 2 and the mucin 2, P-glycoprotein, and CYP3A4 mRNA expression levels (P < 0.05). Berberine increased the expressions of zonula occludins-1 (ZO-1), zonula occludins-2 (ZO-2), Claudin-1, Occludin, and E-cadherin in the ileum (P < 0.05). Moreover, berberine increased the expression of BCL2, reduced intestinal epithelial cell apoptosis (P < 0.05) and decreased the expression of BAX and BAK in the duodenum and jejunum, as well as that of CASP3 and CASP9 in the duodenum and ileum (P < 0.05). Berberine decreased the expression of IL-1β, IL-6, IL-8, TNF-α, and IFN-γ (P < 0.05) and elevated total volatile fatty acids, acetic acid, propionic acid, valeric acid, and isovaleric acid concentrations (P < 0.05). Notably, berberine enhanced the abundance of beneficial bacteria including Enterococcus, Holdemanella, Weissella, Pediococcus, Muribaculum, Colidextribacter, Agathobacter, Roseburia, Clostridium, Fusicatenibacter, and Bifidobacterium. Simultaneously, the relative abundance of harmful and pathogenic bacteria, such as Prevotella, Paraprevotella, Corynebacterium, Catenisphaera, Streptococcus, Enterobacter, and Collinsella, decreased (P < 0.05). Discussion Berberine alleviated ETEC-induced intestinal mucosal barrier damage in weaned piglets models. This is associated with enhancement of the physical, chemical, and immune barrier functions of piglets by enhancing intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xinran Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Hongyu Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
7
|
Liu W, Gui R, Li Y, Li M, Lei Z, Jin Y, Yu Y, Li Y, Qian L, Xiong Y. Linarin Identified as a Bioactive Compound of Lycii Cortex Ameliorates Insulin Resistance and Inflammation Through the c-FOS/ARG2 Signaling Axis. Phytother Res 2025; 39:246-263. [PMID: 39523692 DOI: 10.1002/ptr.8370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Insulin resistance (IR) is a central pathophysiological process underlying numerous chronic metabolic disorders, including type 2 diabetes and obesity. Lycii Cortex, a widely used traditional Chinese herb, has demonstrated potential benefits in preventing and managing diabetes and IR. Whereas, the specific bioactive compounds responsible for these protective effects and their underlying mechanisms of action remain elusive. This study aimed to identify the bioactive components within Lycii Cortex that contribute to its anti-diabetic effects and to elucidate the molecular mechanisms underlying its beneficial actions on insulin resistance. Network pharmacology and molecular docking analyses were employed to identify the potential active compounds in Lycii Cortex and their corresponding target proteins. An in vitro model of IR was established using palmitic acid (PA)-treated HepG2 cells. Cell viability was assessed using the CCK-8 assay, while glucose uptake was evaluated by 2-NBDG staining and extracellular glucose measurement. To validate the in vitro findings, an in vivo model of obesity-induced IR was established using high-fat diet (HFD)-fed mice. The network pharmacology analysis preliminarily identified 13 candidate chemicals and 10 hub LyC and IR-related genes (LIRRGs). Molecular docking analysis demonstrates that Linarin as the potential active component exhibits the greatest potential to target c-FOS for preventing obesity-induced IR. Enrichment analysis suggested that Linarin-targeted pathways are correlated with inflammation. In vitro experimental validation demonstrated that Linarin was capable of protecting against PA-induced IR in HepG2 cells evidenced by improving glucose uptake ability and reducing extracellular glucose content. Additionally, we found that Linarin ablated PA-induced increase in the expression of c-FOS and inflammatory cytokines. Furthermore, in PA-treated cells, silencing c-FOS markedly improved glucose consumption, and reduced inflammation and Arginase 2 (ARG2) expression. Similarly, as exposure to PA, silencing ARG2 also ameliorated glucose uptake and inflammation, while not affecting c-FOS expression. In vivo experiments further showed that Linarin administration remarkably improved glucose tolerance and insulin sensitivity, and reduced the fat mass and body weight in HFD-induced obese mice. In this study, Linarin has been identified as the bioactive compound of Lycii Cortex to ameliorate obesity-related IR and inflammation through the c-FOS/ARG2 signaling cascade. These findings underscore the therapeutic potential of Linarin and provide valuable insights into developing novel intervention strategies for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Wenxuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Man Li
- Department of Endocrinology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Zhen Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yanyan Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yujia Li
- Department of Traditional Chinese Medicine, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
- Xi'an Mental Health Center, Xi'an, Shaanxi, People's Republic of China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
8
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Mi J, Tong Y, Zhang Q, Wang Q, Wang Y, Wang Y, Lin G, Ma Q, Li T, Huang S. Alginate Oligosaccharides Enhance Gut Microbiota and Intestinal Barrier Function, Alleviating Host Damage Induced by Deoxynivalenol in Mice. J Nutr 2024; 154:3190-3202. [PMID: 39357672 DOI: 10.1016/j.tjnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating pro-inflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS After a 1-wk acclimatization period, the mice were divided into 4 groups. For 3 wk, the AOS and AOS + DON groups were gavaged daily with 200 μL of AOS [200 mg/kg body weight (BW)], whereas the CON and DON groups received an equivalent volume of sterile Phosphate-Buffered Saline (PBS). Subsequently, for 1 wk, the DON and AOS + DON groups received 100 μL of DON (4.8 mg/kg BW) daily, whereas the control (CON) and AOS groups continued receiving PBS. RESULTS After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared with the CON group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared with the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by presupplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (claudin and occludin in the colon) and the mucin protein mucin 2, compared with the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared with the DON group. CONCLUSIONS This study unveils that AOS not only enhances gut microbiota and intestinal barrier function but also significantly mitigates DON-induced intestinal damage.
Collapse
Affiliation(s)
- Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yaoyi Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China.
| |
Collapse
|
10
|
Wang L, Long S, Zeng Q, Dong W, Li Y, Su J, Chen Y, Zhou G. Staphylea bumalda Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Cytokines, Oxidative Stress, and Maintaining Gut Homeostasis. Molecules 2024; 29:5030. [PMID: 39519671 PMCID: PMC11547842 DOI: 10.3390/molecules29215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylea bumalda is a rare medicine and edible shrub native to the temperate regions of Asia, possessing significant medicinal potential. In this study, the components of S. bumalda tender leaves and buds extract (SBE) were analyzed and identified by HPLC and LC/MS method, and the safety of SBE was evaluated through mouse acute toxicity models. The protective effects of SBE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated in terms of inflammatory factor levels, oxidative stress, and gut microorganisms. Results showed that hyperoside, kaempferol-3-O-rutinoside, isorhoifolin, and rutin were the main components of the extract, and SBE demonstrated good safety in experimental mice. SBE could alleviate weight losing, disease activity index (DAI) raising, and colon shortening in mice. Pathological section results showed that the inflammatory cell infiltration decreased significantly, and the number of goblet cells increased significantly in the SBE group. After SBE treatment, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in serum were significantly decreased, and the levels of myeloperoxidase (MPO) and nitric oxide (NO) in colon tissues were significantly decreased. SBE inhibited gut inflammation by increasing Lactobacillus. In summary, SBE played a therapeutic role in UC mice by relieving colon injury, reducing inflammatory factor levels, and maintaining gut flora homeostasis. SBE is expected to become an auxiliary means to participate in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Wanrong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yaoyao Li
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Jiangtao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yuxin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
11
|
Huang Z, Liu B, Xiao L, Liao M, Huang L, Zhao X, Ma K, Wang R, Ji F, Li W, Huang L, Xie L. Effects of breast-fed infants-derived Limosilactobacillus reuteri and Bifidobacterium breve ameliorate DSS-induced colitis in mice. iScience 2024; 27:110902. [PMID: 39351200 PMCID: PMC11439849 DOI: 10.1016/j.isci.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Studies have shown that breastfeeding can reduce the risk and severity of inflammatory bowel disease (IBD) in children and adults. Probiotics in breast milk have also been isolated and their effects on IBD have been studied. However, based on current evidence, the exact efficacy and mechanisms of probiotics in the treatment of IBD cannot be determined. In this study, Bifidobacterium breve FPHC4024 (BB FPHC4024) and Limosilactobacillus reuteri FPHC2951 (LR FPHC2951) were isolated from feces of exclusively breastfed healthy infants and administered by gavage to dextran sulfate sodium (DSS)-induced IBD mice. The results showed that LR FPHC2951 improved the symptoms of DSS-induced IBD, increased the expression of interleukin (IL)-10 mRNA and upregulated the abundance of Verrucomicrobiaceae Akkermansia. Combined with Kyoto Encyclopedia of Genes and Genomes (KEGG)-based Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) function prediction results, we hypothesized that LR FPHC2951 improved DSS-induced colitis symptoms in mice by increasing of IL-10 mRNA, altering the structure of intestinal flora, and reducing proinflammatory pathways and enhancing pathways associated with anti-inflammatory and intestinal protection.
Collapse
Affiliation(s)
- Zhipeng Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lanlin Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co., Ltd. Guangzhou 510700, China
| | - Xiaogan Zhao
- Nanjing Agricultural University College of Food Science and Technology, Nanjing, Jiangsu, China
| | - Kai Ma
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Runxin Wang
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Feng Ji
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Wei Li
- Nanjing Agricultural University College of Food Science and Technology, Nanjing, Jiangsu, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Life and Health Sciences, Guangdong Industry Polytechnic University, Guangzhou, Guangdong 510300, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| |
Collapse
|
12
|
Ma Y, Zhang Y, Wang Y, Qiao Z, Liu Y, Xia X. PhoP/PhoQ Two-Component System Contributes to Intestinal Inflammation Induced by Cronobacter sakazakii in Neonatal Mice. Foods 2024; 13:2808. [PMID: 39272573 PMCID: PMC11394756 DOI: 10.3390/foods13172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen capable of causing severe infections in newborns. The PhoP/PhoQ two-component system exerts a significant influence on bacterial virulence. This study aimed to investigate the impact of the PhoP/PhoQ system on intestinal inflammation in neonatal mice induced by C. sakazakii. Neonatal mice were infected orally by C. sakazakii BAA-894 (WT), a phoPQ-gene-deletion strain (ΔphoPQ), and a complementation strain (ΔphoPQC), and the intestinal inflammation in the mice was monitored. Deletion of the phoPQ gene reduced the viable count of C. sakazakii in the ileum and alleviated intestinal tissue damage. Moreover, caspase-3 activity in the ileum of the WT- and ΔphoPQC-infected mice was significantly elevated compared to that of the ΔphoPQ and control groups. ELISA results showed elevated levels of TNF-α and IL-6 in the ileum of the mice infected with WT and ΔphoPQC. In addition, deletion of the phoPQ gene in C. sakazakii resulted in a down-regulation of inflammatory genes (IL-1β, TNF-α, IL-6, NF-κB p65, TLR4) within the ileum and decreased inflammation by modulating the TLR4/NF-κB pathway. It is suggested that targeting the PhoP/PhoQ two-component system could be a potential strategy for mitigating C. sakazakii-induced neonatal infections.
Collapse
Affiliation(s)
- Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Zhang
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Yuting Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Zhou Y, Su J, Dong Y, He Z, Wang Y, Chen S, Lv G. Buddleoside-rich Chrysanthemum indicum L. extract modulates macrophage-mediated inflammation to prevent metabolic syndrome induced by unhealthy diet. BMC Complement Med Ther 2024; 24:315. [PMID: 39179999 PMCID: PMC11344343 DOI: 10.1186/s12906-024-04583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic β-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.
Collapse
Affiliation(s)
- Yiqing Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ziwen He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yajun Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
14
|
Yanping H, Ting G, Xinzhu Z, Yaya L, Yuna Z, Qing L, Xueli M, Jing C. Yinxie I Formula attenuates imiquimod-induced psoriasis-like skin inflammation via IL-23/IL-17 axis. Arch Dermatol Res 2024; 316:540. [PMID: 39158742 PMCID: PMC11333517 DOI: 10.1007/s00403-024-03288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Psoriasis is considered a chronic inflammatory skin disorder characterized by keratinocytes hyperproliferation. The IL-23/IL-17 immune pathway has been substantiated in numerous studies to be closely associated with psoriasis progression. Yinxie I Formula is a traditional Chinese medicine made from 9 herbal medicines, which has excellent clinical efficacy in psoriasis. However, to date, the mechanism of action of Yinxie I Formula against psoriasis remains unknown. In this perspective, we discuss the efficacy of Yinxie I Formula in mice with imiquimod (IMQ) induced psoriasis. Yinxie I Formula significantly reduced the area of skin lesions and the inflammatory response in mice with psoriasis. Furthermore, Yinxie I Formula alleviated the expression levels of inflammation-related genes IL-6, IL-17 A, IL-22, IL-23, TNF-α and IL-23, IL-18, IL-6 and IL-1β-related proteins and alleviated the abnormal surge of dendritic cells, macrophages and T cells in the skin and spleen. Meanwhile we found that Yinxie I Formula reduced the release of NO, TNF-α, IL-1β and IL-23 in lipopolysaccharide-induced mouse macrophage RAW264.7 cell line. The results suggest that the therapeutic mechanism of Yinxie I Formula may also be correlated with the STAT signaling pathway. We further analyzed the active ingredient of Yinxie I Formula, Buddleoside, which may be the main substance that exerts the therapeutic effect. In conclusion, we have investigated that Yinxie I Formula attenuates the IMQ-induced inflammatory response in psoriasis by inhibiting the IL-23/IL-17 axis, which lays the foundation for the antipsoriasis mechanism and provides a theoretical basis for the clinical promotion of Yinxie I Formula.
Collapse
Affiliation(s)
- He Yanping
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Gao Ting
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Zhou Xinzhu
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Lei Yaya
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Zhao Yuna
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Liu Qing
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Ma Xueli
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China
| | - Chen Jing
- Department of Dermatology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, PR China.
| |
Collapse
|
15
|
Djouina M, Ollivier A, Waxin C, Kervoaze G, Pichavant M, Caboche S, Achour D, Grare C, Beury D, Hot D, Anthérieu S, Lo-Guidice JM, Dubuquoy L, Launay D, Vignal C, Gosset P, Body-Malapel M. Chronic Exposure to Both Electronic and Conventional Cigarettes Alters Ileum and Colon Turnover, Immune Function, and Barrier Integrity in Mice. J Xenobiot 2024; 14:950-969. [PMID: 39051349 PMCID: PMC11270428 DOI: 10.3390/jox14030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Anaïs Ollivier
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Gwenola Kervoaze
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Muriel Pichavant
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Philippe Gosset
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| |
Collapse
|
16
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
17
|
Ye J, Ma J, Rozi P, Kong L, Zhou J, Luo Y, Yang H. The polysaccharides from seeds of Glycyrrhiza uralensis ameliorate metabolic disorders and restructure gut microbiota in type 2 diabetic mice. Int J Biol Macromol 2024; 264:130622. [PMID: 38447833 DOI: 10.1016/j.ijbiomac.2024.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Parhat Rozi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Lingming Kong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Alleviative effects of exopolysaccharides from Limosilactobacillus mucosae CCFM1273 against ulcerative colitis via modulation of gut microbiota and inhibition of Fas/Fasl and TLR4/NF-κB pathways. Int J Biol Macromol 2024; 260:129346. [PMID: 38242402 DOI: 10.1016/j.ijbiomac.2024.129346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Ulcerative colitis (UC) has become a public health challenge as its global prevalence increases annually. The use of prebiotics in healthcare has grown in recent years. Thus, the present study was designed to explore the alleviating effects and mechanisms of exopolysaccharides (EPS) produced by Limosilactobacillus mucosae CCFM1273 on UC. The results indicated that CCFM1273 EPS mitigated the disease symptoms and colonic pathologic damage in DSS-induced colitis mice. Moreover, CCFM1273 EPS improved the intestinal barrier by restoring goblet cell numbers and MUC2 production, enhancing intercellular junctions, and inhibiting epithelial cell apoptosis. In addition, CCFM1273 EPS inhibited colonic inflammation and oxidative stress. Importantly, CCFM1273 EPS augmented short-chain fatty acid (SCFA) producers, leading to increased levels of SCFAs (especially propionic acid), which inhibited the Fas/Fasl pathway and consequently inhibited epithelial apoptosis, and diminished Gram-negative bacteria, further decreasing lipopolysaccharides (LPS), which suppressed the TLR4/NF-κB pathway and consequently suppressed colonic inflammation, eventually relieving UC in mice. This study provides theoretical support for the use of prebiotics in clinical practice for UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
19
|
Liu C, Qi X, Li D, Zhao L, Li Q, Mao K, Shen G, Ma Y, Wang R. Limosilactobacillus fermentum HF06-derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1702-1712. [PMID: 37851615 DOI: 10.1002/jsfa.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Paraprobiotics and postbiotics have shown potential in the treatment of ulcerative colitis (UC). However, their in vivo application is still in its infancy and their mechanisms of action are not well understood. RESULTS Here, we investigated the mitigation effects of Limosilactobacillus fermentum HF06-derived paraprobiotic (6-PA) and postbiotic (6-PS) on dextran sulfate sodium induced UC and the potential mechanisms. Results indicated that the administration of 6-PA and 6-PS resulted in the inhibition of weight loss and colon shortening in mice with UC. Furthermore, they led to a significant reduction in both fecal moisture content and the levels of proinflammatory cytokines and oxidative stress in the intestine of the mice. 6-PA and 6-PS treatment strengthened the intestinal mucosal barrier by dramatically upregulating the levels of zonula occludens-1 and occludin proteins. In addition, 6-PA and 6-PS restored intestinal dysbiosis by regulating abundances of certain bacteria, such as Bifidobacterium, Faecalibaculum, Muribaculaceae, Corynebacterium, Escherichia-Shigella and Clostridium_sensu_stricto_1, and regulated the level of short-chain fatty acids. CONCLUSION These findings illustrated for the first time that L. fermentum HF06-derived paraprobiotic and postbiotic enhanced the intestinal barrier function, and restored gut microbiota alterations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhong Liu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xiaofen Qi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Dan Li
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Le Zhao
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Ying Ma
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
20
|
Wang Y, Xie Z, Wu X, Du L, Chong Z, Liu R, Han J. Porcine Intestinal Mucosal Peptides Target Macrophage-Modulated Inflammation and Alleviate Intestinal Homeostasis in Dextrose Sodium Sulfate-Induced Colitis in Mice. Foods 2024; 13:162. [PMID: 38201190 PMCID: PMC10778919 DOI: 10.3390/foods13010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Porcine intestinal mucosal proteins are novel animal proteins that contain large amounts of free amino acids and peptides. Although porcine intestinal mucosal proteins are widely used in animal nutrition, the peptide bioactivities of their enzymatic products are not yet fully understood. In the present study, we investigated the effect of porcine intestinal mucosal peptides (PIMP) on the RAW264.7 cell model of LPS-induced inflammation. The mRNA expression of inflammatory factors (interleukin 6, tumor necrosis factor-α, and interleukin-1β) and nitrous oxide levels were all measured by quantitative real-time PCR and cyclooxygenase-2 protein expression measured by Western blot. To investigate the modulating effect of PIMP and to establish a model of dextran sodium sulfate (DSS)-induced colitis in mice, we examined the effects of hematoxylin-eosin staining, myeloperoxidase levels, pro-inflammatory factor mRNA content, tight junction protein expression, and changes in intestinal flora. Nuclear factor κB pathway protein levels were also assessed by Western blot. PIMP has been shown in vitro to control inflammatory responses and prevent the activation of key associated signaling pathways. PIMP at doses of 100 and 400 mg/kg/day also alleviated intestinal inflammatory responses, reduced tissue damage caused by DSS, and improved intestinal barrier function. In addition, PIMP at 400 mg/kg/day successfully repaired the dysregulated gut microbiota and increased short-chain fatty acid levels. These findings suggest that PIMP may positively influence inflammatory responses and alleviate colitis. This study is the first to demonstrate the potential of PIMP as a functional food for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Xiaolong Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Zhengchen Chong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China;
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China;
| |
Collapse
|
21
|
Ye J, Li Y, Wang X, Yu M, Liu X, Zhang H, Meng Q, Majeed U, Jian L, Song W, Xue W, Luo Y, Yue T. Positive interactions among Corynebacterium glutamicum and keystone bacteria producing SCFAs benefited T2D mice to rebuild gut eubiosis. Food Res Int 2023; 172:113163. [PMID: 37689914 DOI: 10.1016/j.foodres.2023.113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yihua Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huaxin Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lijuan Jian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
22
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
23
|
Jiang Z, Wang X, Zhang H, Yin J, Zhao P, Yin Q, Wang Z. Ketogenic diet protects MPTP-induced mouse model of Parkinson's disease via altering gut microbiota and metabolites. MedComm (Beijing) 2023; 4:e268. [PMID: 37200942 PMCID: PMC10186339 DOI: 10.1002/mco2.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate, high-fat regime that is protective against neurodegenerative diseases. However, the impact of KD on Parkinson's disease (PD) and its mechanisms remains unclear. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was fed with KD for 8 weeks. Motor function and dopaminergic neurons were evaluated. Inflammation in the brain, plasma, and colon tissue were also measured. Fecal samples were assessed by 16S rDNA gene sequencing and untargeted metabolomics. We found that KD protected motor dysfunction, dopaminergic neuron loss, and inflammation in an MPTP mouse model of PD. 16S rDNA sequencing revealed that MPTP administration significantly increased Citrobacter, Desulfovibrio, and Ruminococcus, and decreased Dubosiella, whereas KD treatment reversed the dysbiosis. Meanwhile, KD regulated the MPTP-induced histamine, N-acetylputrescine, d-aspartic acid, and other metabolites. Fecal microbiota transplantation using feces from the KD-treated mice attenuated the motor function impairment and dopaminergic neuron loss in antibiotic-pretreated PD mice. Our current study demonstrates that KD played a neuroprotective role in the MPTP mouse model of PD through the diet-gut microbiota-brain axis, which may involve inflammation in the brain and colon. However, future research is warranted to explore the explicit anti-inflammatory mechanisms of the gut-brain axis in PD models fed with KD.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Geriatric NeurologyThe Second Medical Center & National Clinical Research Center for Geriatric DiseaseChinese PLA General HospitalBeijingChina
| | - Xinyu Wang
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Haoqiang Zhang
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jian Yin
- Department of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouJiangsuChina
- Department of Bio‐Medical DiagnosticsJinan Guo Ke Medical Technology Development Co. Ltd.JinanShandongChina
| | - Peiqing Zhao
- Department of Translational Medical CenterZibo Central Hospital Affiliated to Binzhou Medical UniversityZiboShandongChina
| | - Qingqing Yin
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zhenfu Wang
- Department of Geriatric NeurologyThe Second Medical Center & National Clinical Research Center for Geriatric DiseaseChinese PLA General HospitalBeijingChina
| |
Collapse
|
24
|
Lu Q, Xie Y, Luo J, Gong Q, Li C. Natural flavones from edible and medicinal plants exhibit enormous potential to treat ulcerative colitis. Front Pharmacol 2023; 14:1168990. [PMID: 37324477 PMCID: PMC10268007 DOI: 10.3389/fphar.2023.1168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic aspecific gut inflammatory disorder that primarily involves the recta and colons. It mostly presents as a long course of repeated attacks. This disease, characterized by intermittent diarrhoea, fecal blood, stomachache, and tenesmus, severely decreases the living quality of sick persons. UC is difficult to heal, has a high recurrence rate, and is tightly related to the incidence of colon cancer. Although there are a number of drugs available for the suppression of colitis, the conventional therapy possesses certain limitations and severe adverse reactions. Thus, it is extremely required for safe and effective medicines for colitis, and naturally derived flavones exhibited huge prospects. This study focused on the advancement of naturally derived flavones from edible and pharmaceutical plants for treating colitis. The underlying mechanisms of natural-derived flavones in treating UC were closely linked to the regulation of enteric barrier function, immune-inflammatory responses, oxidative stress, gut microflora, and SCFAs production. The prominent effects and safety of natural-derived flavones make them promising candidate drugs for colitis treatment.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yuhong Xie
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Cailan Li
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. Microbial Community Variations and Bioconversion Improvements during Soybean-Based Fermentation by Kefir Grains. Foods 2023; 12:1588. [PMID: 37107383 PMCID: PMC10137332 DOI: 10.3390/foods12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Soybeans possess unexpected flavors and are difficult to be absorbed by the gastrointestinal tract. Kefir grain fermentation provides diverse strains and bioactive compounds, which may enhance flavor and bioaccessibility. Third-generation sequencing was applied to analyze the microbial diversity in milk and soybean kefir grains in this study. In both types of kefir grains, the most common bacterial genus was Lactobacillus, and their fungal communities were dominated by Kazachstania. Lactobacillus kefiranofaciens was the most abundant species in kefir grains, while Lactobacillus kefiri showed a higher proportion in soybean kefir grains. In addition, the quantification of free amino acids and volatile flavor compounds in soybean solution and soybean kefir have shown the increased content of glutamic acid and a decreased amount of unpleasant beany flavor compounds, demonstrating that the nutritive value and sensory properties of soybean can be improved by kefir grain fermentation. Finally, the bioconversion of isoflavones during fermentation and in vitro digestion was evaluated, suggesting that fermentation is beneficial for aglycone formation and absorption. To conclude, kefir fermentation is proposed to change the microbial structure of kefir grains, promote the nutritional value of soybean-based fermented products, and provide possible solutions for the development of soybean products.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Hu Q, Yu L, Zhai Q, Zhao J, Tian F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24076721. [PMID: 37047694 PMCID: PMC10094816 DOI: 10.3390/ijms24076721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia–Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.
Collapse
Affiliation(s)
- Qianjue Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
28
|
Zhao N, Yang Y, Chen C, Jing T, Hu Y, Xu H, Wang S, He Y, Liu E, Cui J. Betaine supplementation alleviates dextran sulfate sodium-induced colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota. Food Funct 2022; 13:12814-12826. [PMID: 36422855 DOI: 10.1039/d2fo02942a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammatory bowel disease (IBD) is a multifaceted and recurrent immune disorder that occurs in the gastrointestinal tract. Betaine is a natural compound that exerts beneficial anti-inflammatory effects. However, the role of betaine in protecting IBD is still unclear. Therefore, the aim of our study was to investigate the anti-inflammatory effect of betaine in dextran sulfate sodium (DSS)-induced colitis. The results showed that betaine greatly increased the body weight and decreased the disease activity index score of DSS-treated mice. Furthermore, betaine effectively downregulated the protein levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and upregulated tight junction proteins (occludin and ZO-1) in the mice. Additionally, betaine exposure remarkably restricted the DSS-induced phosphorylation of IκB and NF-κB p65 in mice. Similarly, betaine pretreatment improved the inflammatory response and intestinal barrier of Caco-2 cells. Betaine altered the gut microbiota composition, markedly decreasing the relative abundance of Firmicutes and Proteobacteria and considerably increasing the relative abundance of Bacteroidota and Campylobacterota in DSS-induced mice. In conclusion, betaine could attenuate colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota and is conducive to developing new drugs for treating human diseases.
Collapse
Affiliation(s)
- Nannan Zhao
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yuhang Yang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Chen Chen
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Tengfang Jing
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Haixu Xu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Shuai Wang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Enqi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Jue Cui
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| |
Collapse
|