1
|
Mao R, Zhang J, Qin H, Liu Y, Xing Y, Zeng W. Application progress of bio-manufacturing technology in kidney organoids. Biofabrication 2025; 17:022007. [PMID: 39933190 DOI: 10.1088/1758-5090/adb4a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Kidney transplantation remains a pivotal treatment modality for kidney disease, yet its progress is significantly hindered by the scarcity of donor kidneys and ethical dilemmas surrounding their procurement. As organoid technology evolves and matures, the creation of bionic human kidney organoids offers profound potential for advancing kidney disease research, drug nephrotoxicity screening, and regenerative medicine. Nevertheless, current kidney organoid models grapple with limitations such as constrained cellular differentiation, underdeveloped functional structures, and a crucial absence of vascularization. This deficiency in vascularization, in particular, stunts organoid development, restricts their size, diminishes filtration capabilities, and may trigger immune inflammatory reactions through the resulting ischemic microenvironment. Hence, the achievement of vascularization within kidney organoids and the successful establishment of functional microvascular networks constitutes a paramount goal for their future progression. In this review, we provide an overview of recent advancements in biotechnology domains, encompassing organ-on-a-chip technology, biomimetic matrices, and bioprinting, with the aim of catalyzing technological breakthroughs that can enhance the vascularization of kidney organoids and broaden their applicability. These technologies hold the key to unlocking the full potential of kidney organoids as a transformative therapeutic option for kidney disease.
Collapse
Affiliation(s)
- Runqi Mao
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Junming Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuxin Xing
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| |
Collapse
|
2
|
Yuan T, Fu X, Hu R, Zheng X, Jiang D, Jing L, Kuang X, Guo Z, Luo X, Liu Y, Zou X, Luker GD, Mi S, Liu C, Sun W. Bioprinted, spatially defined breast tumor microenvironment models of intratumoral heterogeneity and drug resistance. Trends Biotechnol 2024; 42:1523-1550. [PMID: 39112274 DOI: 10.1016/j.tibtech.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 11/17/2024]
Abstract
Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand-receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy.
Collapse
Affiliation(s)
- Tianying Yuan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055, Shenzhen, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xihong Fu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Rongcheng Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaochun Zheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Dong Jiang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Lanyu Jing
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaying Kuang
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, 450001, Zhengzhou, China
| | - Xu Luo
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yixin Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Chun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Wei Sun
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055, Shenzhen, China; Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, 100084, Beijing, China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Schmid KF, Zeinali S, Moser SK, Dubey C, Schneider S, Deng H, Haefliger S, Marti TM, Guenat OT. Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model. Front Bioeng Biotechnol 2024; 12:1457884. [PMID: 39439549 PMCID: PMC11493642 DOI: 10.3389/fbioe.2024.1457884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
Collapse
Affiliation(s)
- Karin F. Schmid
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Susanne K. Moser
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Du Y, Xu XX, Yu SX, Wang YR, Liu Y, Liu F, Liu W, Li XL, Luo H, Jing G, Liu YJ. Dynamics of endothelial cells migration in nature-mimicking blood vessels. Talanta 2024; 277:126415. [PMID: 38878513 DOI: 10.1016/j.talanta.2024.126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Endothelial cells (ECs) migration is a crucial early step in vascular repair and tissue neovascularization. While extensive research has elucidated the biochemical drivers of endothelial motility, the impact of biophysical cues, including vessel geometry and topography, remains unclear. Herein, we present a novel approach to reconstruct 3D self-assembly blood vessels-on-a-chip that accurately replicates real vessel geometry and topography, surpassing conventional 2D flat tube formation models. This vessels-on-a-chip system enables real-time monitoring of vasculogenesis and ECs migration at high spatiotemporal resolution. Our findings reveal that ECs exhibit increased migration speed and directionality in response to narrower vessel geometries, transitioning from a rounded to a polarized morphology. These observations underscore the critical influence of vessel size in regulating ECs migration and morphology. Overall, our study highlights the importance of biophysical factors in shaping ECs behavior, emphasizing the need to consider such factors in future studies of endothelial function and vessel biology.
Collapse
Affiliation(s)
- Yang Du
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yi-Ran Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yixin Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Fan Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Xiu-Lan Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Hao Luo
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Feng X, Wu Z, Cheng LKW, Xiang Y, Sugimura R, Lin X, Wu AR. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction. LAB ON A CHIP 2024; 24:3546-3555. [PMID: 38949063 DOI: 10.1039/d3lc01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.
Collapse
Affiliation(s)
- Xiaohan Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Zehaoyu Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Lily Kwan Wai Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Yang Xiang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Xuyan Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Center for Engineering Material and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
6
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
7
|
Moccia C, Cherubini M, Fortea M, Akinbote A, Padmanaban P, Beltran‐Sastre V, Haase K. Mammary Microvessels are Sensitive to Menstrual Cycle Sex Hormones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302561. [PMID: 37897317 PMCID: PMC10724440 DOI: 10.1002/advs.202302561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/04/2023] [Indexed: 10/30/2023]
Abstract
The mammary gland is a highly vascularized organ influenced by sex hormones including estrogen (E2) and progesterone (P4). Beyond whole-organism studies in rodents or cell monocultures, hormonal effects on the breast microvasculature remain largely understudied. Recent methods to generate 3D microvessels on-chip have enabled direct observation of complex vascular processes; however, these models often use non-tissue-specific cell types, such as human umbilical vein endothelial cells (HUVECs) and fibroblasts from various sources. Here, novel mammary-specific microvessels are generated by coculturing primary breast endothelial cells and fibroblasts under optimized culture conditions. These microvessels are mechanosensitive (to interstitial flow) and require endothelial-stromal interactions to develop fully perfusable vessels. These mammary-specific microvessels are also responsive to exogenous stimulation by sex hormones. When treated with combined E2 and P4, corresponding to the four phases of the menstrual cycle (period, follicular, ovular, and luteal), vascular remodeling and barrier function are altered in a phase-dependent manner. The presence of high E2 (ovulation) promotes vascular growth and remodeling, corresponding to high depletion of proangiogenic factors, whereas high P4 concentrations (luteal) promote vascular regression. The effects of combined E2 and P4 hormones are not only dose-dependent but also tissue-specific, as are shown by similarly treating non-tissue-specific HUVEC microvessels.
Collapse
Affiliation(s)
- Carmen Moccia
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marta Cherubini
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Marina Fortea
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | - Akinola Akinbote
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
- Heidelberg UniversityHeidelbergGermany
| | - Prasanna Padmanaban
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| | | | - Kristina Haase
- European Molecular Biology Laboratory, BarcelonaDr. Aiguader, 88Barcelona08003Spain
| |
Collapse
|
8
|
Gong Y, Liang Y, Liu J, Wei J, Zhang S, Chen F, Zhang Q, Wang L, Lan H, Wu L, Ge W, Li S, Wang L, Shan H, He H. DDX24 Is Essential for Cell Cycle Regulation in Vascular Smooth Muscle Cells During Vascular Development via Binding to FANCA mRNA. Arterioscler Thromb Vasc Biol 2023; 43:1653-1667. [PMID: 37470182 DOI: 10.1161/atvbaha.123.319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The DEAD-box family is essential for tumorigenesis and embryogenesis. Previously, we linked the malfunction of DDX (DEAD-box RNA helicase)-24 to a special type of vascular malformation. Here, we aim to investigate the function of DDX24 in vascular smooth muscle cells (VSMCs) and embryonic vascular development. METHODS Cardiomyocyte (CMC) and VSMC-specific Ddx24 knockout mice were generated by crossing Tagln-Cre mice with Ddx24flox/flox transgenic mice. The development of blood vessels was explored by stereomicroscope photography and immunofluorescence staining. Flow cytometry and cell proliferation assays were used to verify the regulation of DDX24 on the function of VSMCs. RNA sequencing and RNA immunoprecipitation coupled with quantitative real-time polymerase chain reaction were combined to investigate DDX24 downstream regulatory molecules. RNA pull-down and RNA stability experiments were performed to explore the regulation mechanism of DDX24. RESULTS CMC/VSMC-specific Ddx24 knockout mice died before embryonic day 13.5 with defects in vessel formation and abnormal vascular remodeling in extraembryonic tissues. Ddx24 knockdown suppressed VSMC proliferation via cell cycle arrest, likely due to increased DNA damage. DDX24 protein bound to and stabilized the mRNA of FANCA (FA complementation group A) that responded to DNA damage. Consistent with the function of DDX24, depletion of FANCA also impacted cell cycle and DNA repair of VSMCs. Overexpression of FANCA was able to rescue the alterations caused by DDX24 deficiency. CONCLUSIONS Our study unveiled a critical role of DDX24 in VSMC-mediated vascular development, highlighting a potential therapeutic target for VSMC-related pathological conditions.
Collapse
Affiliation(s)
- Yujiao Gong
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shushan Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lily Wu
- Departments of Molecular and Medical Pharmacology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Urology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Pediatrics (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China (W.G.)
| | - Shuai Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
9
|
Kim S, Park J, Ho JN, Kim D, Lee S, Jeon JS. 3D vascularized microphysiological system for investigation of tumor-endothelial crosstalk in anti-cancer drug resistance. Biofabrication 2023; 15:045016. [PMID: 37567223 DOI: 10.1088/1758-5090/acef99] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|