1
|
Augustine S, Venkadesh A, Kaushal S, Lee E, Ajaj M, Lee NE. Point-of-Care Testing: The Convergence of Innovation and Accessibility in Diagnostics. Anal Chem 2025; 97:9569-9599. [PMID: 40314609 DOI: 10.1021/acs.analchem.4c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the years, the evolution of point-of-care testing (POCT) has been driven by technological advancements in materials, design, and artificial intelligence, as well as breakthrough developments in wearable technologies. These innovations are shifting diagnostics from centralized medical facilities to individual homes, meeting the growing demand for personalized healthcare. This Review explores recent advancements in binding-based assay technologies over the past two years, focusing on platforms such as traditional flow assays (lateral and vertical flow), fully integrated microfluidic devices, and wearable biosensor-integrated systems for POCT applications. It emphasizes the role of optical and electrochemical detection methods, which are essential for ensuring the sensitivity, specificity, and reliability required in a POCT. POCT technologies offer advantages including ease of use, high diagnostic accuracy, rapid clinical assessment, and cost-effectiveness in manufacturing and consumables. Additionally, the Review highlights current challenges and future perspectives for delivering personalized healthcare through portable and wearable POCT systems that operate on a sample-in, result-out basis.
Collapse
Affiliation(s)
- Shine Augustine
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Anandharaman Venkadesh
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sandeep Kaushal
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eunghyuk Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Malak Ajaj
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nae-Eung Lee
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Institute of Quantum Biophysics (IQB) and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
2
|
Xu J, Zhang H, Tan Y, Gao Z, Ye H, Dong H. High-visual-resolution colorimetric immunoassay with attomolar sensitivity using kinetically controlled growth of Ag in AuAg nanocages and poly-enzyme-boosted tyramide signal amplification. Talanta 2025; 286:127432. [PMID: 39724856 DOI: 10.1016/j.talanta.2024.127432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Colorimetric enzyme-linked immunosorbent assays (CELISAs) have long been used for protein biomarker detection in diagnostics. Unfortunately, as confined by the monochromatic nature of detection signals and the limited catalytic activity of enzymes, CELISAs suffer from poor visual resolution and low sensitivity, hindering their effectiveness for early diagnostics in resource-limited settings. Herein, we report an ultrasensitive, high-visual-resolution CELISA (named PE-TSA-AuAg Cage-CELISA) that combines kinetically controlled growth of Ag in AuAg nanocages with poly-enzyme-boosted tyramide signal amplification (PE-TSA), enabling visual semiquantitative detection of protein biomarkers at attomolar levels with the naked eye. Specifically, the assay begins with the formation of sandwich-type immunocomplexes on a microplate in the presence of targets, and the labeled poly-horseradish peroxidases (poly-HRPs) initiate TSA, resulting in attaching numerous alkaline phosphatases (ALPs) on the microplate. The ALPs further catalyze ascorbic acid 2-phosphate to produce ascorbic acid, triggering the kinetically controlled growth of Ag inside AuAg nanocages. This process induces vivid multicolor variations spanning the visible spectrum range of 691∼477 nm, allowing for visual semiquantitation of protein biomarkers at ultralow levels without requiring specialized equipment. Using interleukin-12 as a model protein biomarker, we demonstrate that the PE-TSA-AuAg Cage-CELISA achieves a visual semiquantitative limit of detection (LOD) of 5 fg mL-1 (67 aM) and an instrumental quantitative LOD of 0.71 fg mL-1 (9.5 aM), representing an 853-fold improvement compared to the conventional HRP-based CELISA. Our findings suggest that the PE-TSA-AuAg Cage-CELISA has the potential to serve as an affordable and effective biosensing platform for early diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Jianglian Xu
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Han Zhang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yongfeng Tan
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Zhuangqiang Gao
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Haihang Ye
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Su-zhou, Jiangsu, PR China; Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
3
|
Mak D, Meffan C, Menges J, Marchant-Ludlow R, Hashemi A, Moore CP, Dobson RCJ, Nock V. The reversible capillary field effect transistor: a capillaric element for autonomous flow switching. LAB ON A CHIP 2025; 25:1993-2003. [PMID: 39820164 DOI: 10.1039/d4lc00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels via autonomous circuit feedback. This allows new flow switching functionality without the need for direct user input. The valve design utilises new circuitry that draws on competing capillary pressures to withdraw liquid from a reservoir connected to the valve, creating a suction pressure that removes the occluding bubble from the channel to allow flow past the valve. The resulting reopening restores flow to the closed channel and allows for enhanced autonomous control over fluid flows. This new functionality is flexible and has the potential to be applied in a wide variety of situations, as shown here by use in several extended proof of concept arrangements. Firstly, we demonstrate how to reopen one valve while closing another using the same trigger to achieve simultaneous flow switching. We then show how a single trigger can be used for the parallel reopening of multiple valves for simultaneous release of liquids. Finally, we show the reversible capillary field effect transistor used to achieve autonomous transient mixing ratios between multiple liquids utilising a series of triggering events to determine which liquid channels are open or closed as flow progresses. The functionality this valve adds to the capillaric toolbox opens up new possibilities for applications in the creation of fully automatic diagnostic capillaric devices.
Collapse
Affiliation(s)
- Daniel Mak
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Claude Meffan
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Julian Menges
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Rhys Marchant-Ludlow
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Azadeh Hashemi
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Ciaran P Moore
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Volker Nock
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
4
|
Lin R, Guo W, Chen Y, Li H, Luo Z, Fan Z, Tu J, Ling P, Liu R. Liquid Bridge Cutting Valves for Microfluidic Passive Distribution and Sequential Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411708. [PMID: 40059515 DOI: 10.1002/smll.202411708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Indexed: 04/25/2025]
Abstract
In bioanalysis, precisely isolating liquid reactions in distinct systems or at different temporal sequences is vital for ensuring accurate results devoid of crosstalk. However, passive liquid isolation is unattainable through existing microfluidic valves. Here, liquid bridge cutting valves (LBCVs) are introduced to automatically segregate liquids by establishing airlocks, offering an innovative microfluidic structure for liquid distribution. The principle of liquid bridge breakup is studied and applied to the design of LBCVs. Additionally, monolithic chips connecting units with LBCVs in different topologies facilitate sequential sampling and reactions, achieving the detection of sweat glucose and lactate in wearable applications, as well as cortisol ELISA on the chips. As a missing puzzle piece of microfluidic elements in liquid separation, LBCVs can be seamlessly integrated with maturing microfluidic structures, creating a lab-on-a-chip device to enable complex fluid manipulation for individual healthcare monitoring and clinical scenarios.
Collapse
Affiliation(s)
- Rongzan Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen Guo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuqiu Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haojie Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyang Luo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zixiao Fan
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinying Tu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Peng Ling
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Samantasinghar A, Sunildutt N, Ahmed F, Memon FH, Kang C, Choi KH. Revolutionizing Biomedical Research: Unveiling the Power of Microphysiological Systems with Advanced Assays, Integrated Sensor Technologies, and Real-Time Monitoring. ACS OMEGA 2025; 10:9869-9889. [PMID: 40124012 PMCID: PMC11923667 DOI: 10.1021/acsomega.4c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/25/2025]
Abstract
The limitation of animal models to imitate a therapeutic response in humans is a key problem that challenges their use in fundamental research. Organ-on-a-chip (OOC) devices, also called microphysiological systems (MPS), are devices containing a lining of living cells grown under dynamic flow to recapitulate the important features of human physiology and pathophysiology with high precision. Recent advances in microfabrication and tissue engineering techniques have led to the wide adoption of OOC in next-generation experimental platforms. This review presents a comprehensive analysis of the OOC systems, categorizing them by flow types (single-pass and multipass), operational mechanisms (pumpless and pump-driven), and configurations (single-organ and multiorgan systems), along with their respective advantages and limitations. Furthermore, it explores the integration of qualitative and quantitative assay techniques, providing a comparative evaluation of systems with and without sensor integration. This review aims to fill essential knowledge gaps, driving the progress of the development of OOC systems and paving the way for breakthroughs in biomedical research, pharmaceutical innovation, and tissue engineering.
Collapse
Affiliation(s)
- Anupama Samantasinghar
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Fida Hussain Memon
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
- Department
of Electrical Engineering, Sukkur IBA University, Sindh 65200, Pakistan
| | - Chulung Kang
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| |
Collapse
|
6
|
Yuan H, Miao Z, Wan C, Wang J, Liu J, Li Y, Xiao Y, Chen P, Liu BF. Recent advances in centrifugal microfluidics for point-of-care testing. LAB ON A CHIP 2025; 25:1015-1046. [PMID: 39776118 DOI: 10.1039/d4lc00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jingjing Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Jinzhi Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Strohmaier-Nguyen D, Horn C, Baeumner AJ. Innovations in one-step point-of-care testing within microfluidics and lateral flow assays for shaping the future of healthcare. Biosens Bioelectron 2025; 267:116795. [PMID: 39332251 DOI: 10.1016/j.bios.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Point-of-care testing (POCT) technology, using lateral flow assays and microfluidic systems, facilitates cost-effective diagnosis, timely treatment, ongoing monitoring, and prevention of life-threatening outcomes. Aside from significant advancements demonstrated in academic research, implementation in real-world applications remains frustratingly limited. The divergence between academic developments and practical utility is often due to factors such as operational complexity, low sensitivity and the need for trained personnel. Taking this into consideration, our objective is to present a critical and objective overview of the latest advancements in fully integrated one-step POCT assays for home-testing which would be commercially viable. In particular, aspects of signal amplification, assay design modification, and sample preparation are critically evaluated and their features and medical applications along with future perspective and challenges with respect to minimal user intervention are summarized. Associated with and very important for the one-step POCT realization are also readout devices and fabrication processes. Critical analysis of available and useful technologies are presented in the SI section.
Collapse
Affiliation(s)
- Dan Strohmaier-Nguyen
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Carina Horn
- Roche Diagnostics GmbH, 68305, Mannheim, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Aghajanloo B, Losereewanich W, Pastras CJ, Inglis DW. Wicking pumps for microfluidics. BIOMICROFLUIDICS 2024; 18:061501. [PMID: 39494378 PMCID: PMC11531334 DOI: 10.1063/5.0218030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
This review describes mechanisms for pulling fluids through microfluidic devices using hydrophilic structures at the downstream end of the device. These pumps enable microfluidic devices to get out of the lab and become point-of-care devices that can be used without external pumps. We briefly summarize prior related reviews on capillary, pumpless, and passively driven microfluidics then provide insights into the fundamental physics of wicking pumps. No prior reviews have focused on wicking pumps for microfluidics. Recent progress is divided into four categories: porous material pumps, hydrogel pumps, and 2.5D- and 3D-microfabricated pumps. We conclude with a discussion of challenges and opportunities in the field, which include achieving constant flow rate, priming issues, and integration of pumps with devices.
Collapse
Affiliation(s)
| | | | | | - David W. Inglis
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Khoo H, Allen WS, Arroyo-Currás N, Hur SC. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing. Sci Rep 2024; 14:17646. [PMID: 39085631 PMCID: PMC11291766 DOI: 10.1038/s41598-024-68761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Microfluidic devices have immense potential for widespread community use, but a current bottleneck is the transition from research prototyping into mass production because the gold standard prototyping strategy is too costly and labor intensive when scaling up fabrication throughput. For increased throughput, it is common to mold devices out of thermoplastics due to low per-unit costs at high volumes. However, conventional fabrication methods have high upfront development expenses with slow mold fabrication methods that limit the speed of design evolution for expedited marketability. To overcome this limitation, we propose a rapid prototyping protocol to fabricate thermoplastic devices from a stereolithography (SLA) 3D printed template through intermediate steps akin to those employed in soft lithography. We apply this process towards the design of self-operating capillaric circuits, well suited for deployment as low-cost decentralized assays. Rapid development of these geometry- and material-dependent devices benefits from prototyping with thermoplastics. We validated the constructed capillaric circuits by performing an autonomous, pre-programmed, bead-based immunofluorescent assay for protein quantification. Overall, this prototyping method provides a valuable means for quickly iterating and refining microfluidic devices, paving the way for future scaling of production.
Collapse
Affiliation(s)
- Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles ST., Latrobe 105, Baltimore, MD, 21218, USA
| | | | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles ST., Latrobe 105, Baltimore, MD, 21218, USA.
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
11
|
Pohanka M, Keresteš O, Žáková J. A 3D-Printed Do-It-Yourself ELISA Plate Reader as a Biosensor Tested on TNFα Assay. BIOSENSORS 2024; 14:331. [PMID: 39056607 PMCID: PMC11274727 DOI: 10.3390/bios14070331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Simple analytical devices suitable for the analysis of various biochemical and immunechemical markers are highly desirable and can provide laboratory diagnoses outside standard hospitals. This study focuses on constructing an easily reproducible do-it-yourself ELISA plate reader biosensor device, assembled from generally available and inexpensive parts. The colorimetric biosensor was based on standard 96-well microplates, 3D-printed parts, and a smartphone camera as a detector was utilized here as a tool to replace the ELISA method, and its function was illustrated in the assay of TNFα as a model immunochemical marker. The assay provided a limit of detection of 19 pg/mL when the B channel of the RGB color model was used for calibration. The assay was well correlated with the ELISA method, and no significant matrix effect was observed for standard biological samples or interference of proteins expected in a sample. The results of this study will inform the development of simple analytical devices easily reproducible by 3D printing and found on generally available electronics.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Military Faculty of Medicine, University of Defence, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic; (O.K.)
| | | | | |
Collapse
|
12
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
13
|
Shafique H, Karamzadeh V, Kim G, Shen ML, Morocz Y, Sohrabi-Kashani A, Juncker D. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. LAB ON A CHIP 2024; 24:2774-2790. [PMID: 38682609 DOI: 10.1039/d3lc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The fabrication of microfluidic devices has progressed from cleanroom manufacturing to replica molding in polymers, and more recently to direct manufacturing by subtractive (e.g., laser machining) and additive (e.g., 3D printing) techniques, notably digital light processing (DLP) photopolymerization. However, many methods require technical expertise and DLP 3D printers remain expensive at a cost ∼15-30 K USD with ∼8 M pixels that are 25-40 μm in size. Here, we introduce (i) the use of low-cost (∼150-600 USD) liquid crystal display (LCD) photopolymerization 3D printing with ∼8-58 M pixels that are 18-35 μm in size for direct microfluidic device fabrication, and (ii) a poly(ethylene glycol) diacrylate-based ink developed for LCD 3D printing (PLInk). We optimized PLInk for high resolution, fast 3D printing and biocompatibility while considering the illumination inhomogeneity and low power density of LCD 3D printers. We made lateral features as small as 75 μm, 22 μm-thick embedded membranes, and circular channels with a 110 μm radius. We 3D printed microfluidic devices previously manufactured by other methods, including an embedded 3D micromixer, a membrane microvalve, and an autonomous capillaric circuit (CC) deployed for interferon-γ detection with excellent performance (limit of detection: 12 pg mL-1, CV: 6.8%). We made PLInk-based organ-on-a-chip devices in 384-well plate format and produced 3420 individual devices within an 8 h print run. We used the devices to co-culture two spheroids separated by a vascular barrier over 5 days and observed endothelial sprouting, cellular reorganization, and migration. LCD 3D printing together with tailored inks pave the way for democratizing access to high-resolution manufacturing of ready-to-use microfluidic and organ-on-a-chip devices by anyone, anywhere.
Collapse
Affiliation(s)
- Houda Shafique
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Vahid Karamzadeh
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Geunyong Kim
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Molly L Shen
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Yonatan Morocz
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Ahmad Sohrabi-Kashani
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Qian C, Li P, Wang J, Hong X, Zhao X, Wu L, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Centrifugo-Pneumatic Reciprocating Flowing Coupled with a Spatial Confinement Strategy for an Ultrafast Multiplexed Immunoassay. Anal Chem 2024; 96:7145-7154. [PMID: 38656793 DOI: 10.1021/acs.analchem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Wang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liqiang Wu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Rybak L, Carbone G, Malyshev D, Voloshkin A. Design and Optimization of a Robot Dosing Device for Aliquoting of Biological Samples Based on Genetic Algorithms. MACHINES 2024; 12:172. [DOI: 10.3390/machines12030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aliquoting of biological samples refers to the process of dividing a larger biological sample into smaller, representative portions known as aliquots. This procedure is commonly employed in laboratories, especially in fields like molecular biology, genetics, and clinical research. Currently, manual dosing devices are commonplace in laboratories, but they demand a significant amount of time for their manual operation. The automated dosing devices available are integrated into narrowly focused aliquoting systems and lack versatility as manipulator equipment. Addressing this limitation, a novel technical solution is proposed in this paper for a modular dosing device compatible with robotic manipulators. The paper introduces and details a mathematical model, optimizes its parameters, and constructs a detailed 3D model using the NX environment to demonstrate the engineering feasibility of our concept. It further outlines the development of a three-dimensional dynamic simulation model for the dosing device, comparing analytical calculations with simulation results. The construction of a dosing device prototype is discussed, followed by a comprehensive experimental validation.
Collapse
Affiliation(s)
- Larisa Rybak
- Research Institute Robotics and Control Systems, Belgorod State Technological University n.a. V.G. Shukhov, Kostyukova st., 46, 308012 Belgorod, Russia
| | - Giuseppe Carbone
- Research Institute Robotics and Control Systems, Belgorod State Technological University n.a. V.G. Shukhov, Kostyukova st., 46, 308012 Belgorod, Russia
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy
| | - Dmitry Malyshev
- Research Institute Robotics and Control Systems, Belgorod State Technological University n.a. V.G. Shukhov, Kostyukova st., 46, 308012 Belgorod, Russia
| | - Artem Voloshkin
- Research Institute Robotics and Control Systems, Belgorod State Technological University n.a. V.G. Shukhov, Kostyukova st., 46, 308012 Belgorod, Russia
| |
Collapse
|
17
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
18
|
Kang JW, Jeon J, Lee JY, Jeon JH, Hong J. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication. MICROMACHINES 2023; 15:61. [PMID: 38258180 PMCID: PMC10820386 DOI: 10.3390/mi15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
In recent times, the utilization of three-dimensional (3D) printing technology, particularly a variant using digital light processing (DLP), has gained increasing fascination in the realm of microfluidic research because it has proven advantageous and expedient for constructing microscale 3D structures. The surface wetting characteristics (e.g., contact angle and contact angle hysteresis) of 3D-printed microstructures are crucial factors influencing the operational effectiveness of 3D-printed microfluidic devices. Therefore, this study systematically examines the surface wetting characteristics of DLP-based 3D printing objects, focusing on various printing conditions such as lamination (or layer) thickness and direction. We preferentially examine the impact of lamination thickness on the surface roughness of 3D-printed structures through a quantitative assessment using a confocal laser scanning microscope. The influence of lamination thicknesses and lamination direction on the contact angle and contact angle hysteresis of both aqueous and oil droplets on the surfaces of 3D-printed outputs is then quantified. Finally, the performance of a DLP 3D-printed microfluidic device under various printing conditions is assessed. Current research indicates a connection between printing parameters, surface roughness, wetting properties, and capillary movement in 3D-printed microchannels. This correlation will greatly aid in the progress of microfluidic devices produced using DLP-based 3D printing technology.
Collapse
Affiliation(s)
| | | | | | | | - Jiwoo Hong
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (J.-W.K.); (J.J.); (J.-Y.L.); (J.-H.J.)
| |
Collapse
|
19
|
Karamzadeh V, Sohrabi-Kashani A, Shen M, Juncker D. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303867. [PMID: 37531202 DOI: 10.1002/adma.202303867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Digital manufacturing (DM) holds great potential for microfluidics, but requirements for embedded conduits and high resolution beyond the capability of common manufacturing equipment, and microfluidic systems' dependence on peripheralshave limited its adoption. Capillaric circuits (CCs) are structurally encoded, self-contained microfluidic systems that operate and self-fill via precisely tailored hydrophilicity. CCs are heretofore hydrophilized in a plasma chamber, but which offers only transient hydrophilicity, lacks reproducibility, and limits CC design to open surface channels subsequently sealed with tape. Here, the additive DM of monolithic, fully functional, and intrinsically hydrophilic CCs is reported. CCs are 3D printed with commonly available light-engine-based 3D printers using poly(ethylene glycol)diacrylate-based ink co-polymerized with hydrophilic acrylic acid crosslinkers and optimized for hydrophilicity and printability. A new, robust capillary valve design and embedded conduits with circular cross-sections that prevent bubble trapping are presented, interwoven circuit architectures created, and CC use illustrated with an immunoassay. Finally, the external paper capillary pumps are eliminated by directly embedding the capillary pump in the chip as a porous gyroid structure, realizing fully functional, monolithic CCs. Thence, a digital file can be made into a CC by commonly available 3D printers in less than 30 min enabling low-cost, distributed DM of fully functional ready-to-use microfluidic systems.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - Ahmad Sohrabi-Kashani
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - Molly Shen
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, Montreal, QC, H3A 0G1, Canada
- McGill Genome Centre, McGill University, Montreal, H3A 0G1, Canada
| |
Collapse
|
20
|
Glasco DL, Sheelam A, Ho NHB, Bell JG. Smartphone-based detection of levodopa in human sweat using 3D printed sensors. Anal Chim Acta 2023; 1273:341546. [PMID: 37423672 DOI: 10.1016/j.aca.2023.341546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Parkinson's disease (PD) is one of the leading neurological disorders negatively impacting health on a global scale. Patients diagnosed with PD require frequent monitoring, prescribed medications, and therapy for extended periods as symptom severity worsens. The primary pharmaceutical treatment for PD patients is levodopa (L-Dopa) which reduces many symptoms experienced by PD patients (e.g., tremors, cognitive ability, motor dysfunction, etc.) through the regulation of dopamine levels in the body. Herein, the first detection of L-Dopa in human sweat using a low-cost 3D printed sensor with a simple and rapid fabrication protocol combined with a portable potentiostat wirelessly connected to a smartphone via Bluetooth is reported. By combining saponification and electrochemical activation into a single protocol, the optimized 3D printed carbon electrodes were able to simultaneously detect uric acid and L-Dopa throughout their biologically relevant ranges. The optimized sensors provided a sensitivity of 83 ± 3 nA/μM from 24 μM to 300 nM L-Dopa. Common physiological interferents found in sweat (e.g., ascorbic acid, glucose, caffeine) showed no influence on the response for L-Dopa. Lastly, a percent recovery of L-Dopa in human sweat using a smartphone-assisted handheld potentiostat resulted in the recovery of 100 ± 8%, confirming the ability of this sensor to accurately detect L-Dopa in sweat.
Collapse
Affiliation(s)
- Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Anjaiah Sheelam
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Nguyen H B Ho
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
21
|
Azizian P, Casals-Terré J, Guerrero-SanVicente E, Grinyte R, Ricart J, Cabot JM. Coupling Capillary-Driven Microfluidics with Lateral Flow Immunoassay for Signal Enhancement. BIOSENSORS 2023; 13:832. [PMID: 37622918 PMCID: PMC10452194 DOI: 10.3390/bios13080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Microfluidics has emerged as a versatile technology that is applied to enhance the performance of analytical techniques, among others. Pursuing this, we present a capillary-driven microfluidic device that improves the sensitivity of lateral flow immunoassay rapid tests thanks to offering an automated washing step. A novel multilevel microfluidic chip was 3D-printed with a photocurable black resin, sealed by an optically clear pressure-sensitive adhesive, and linked to the lateral flow strip. To depict the efficacy of microfluidics and the washing step, cortisol was measured quantitatively within the proposed device. Measuring cortisol levels is a way to capture physiological stress responses. Among biofluids, saliva is less infectious and easier to sample than others. However, higher sensitivity is demanded because the salivary cortisol concentrations are much lower than in blood. We carried out a competitive lateral flow immunoassay protocol with the difference that the microfluidic device applies an automated washing step after the sample is drained downstream. It washes the trapped quantum-dot-labeled antibodies out from nitrocellulose, diminishing background noise as these are bonded to cortisols and not to the immobilized receptors. Fluorescence spectroscopy, as a high-precision analysis, was successfully applied to determine clinically relevant salivary cortisol concentrations within a buffer quantitatively. The microfluidic design relied on a 3D valve that avoids reagent cross-contamination. This cross-contamination could make the washing buffer impure and undesirably dilute the sample. The proposed device is cost-effective, self-powered, robust, and ideal for non-expert users.
Collapse
Affiliation(s)
- Pooya Azizian
- Energy and Engineering Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain; (P.A.)
- Mechanical Engineering Department, Technical University of Catalonia, 08222 Terrassa, Barcelona, Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department, Technical University of Catalonia, 08222 Terrassa, Barcelona, Spain
| | - Elena Guerrero-SanVicente
- Energy and Engineering Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain; (P.A.)
| | - Ruta Grinyte
- Energy and Engineering Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain; (P.A.)
| | - Jordi Ricart
- Energy and Engineering Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain; (P.A.)
| | - Joan M. Cabot
- Energy and Engineering Department, Leitat Technological Center, 08225 Terrassa, Barcelona, Spain; (P.A.)
| |
Collapse
|
22
|
Azizian P, Casals-Terré J, Ricart J, Cabot JM. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics. MICROSYSTEMS & NANOENGINEERING 2023; 9:91. [PMID: 37469685 PMCID: PMC10352302 DOI: 10.1038/s41378-023-00568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the π-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the π-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction-expansion valve) demonstrates that the π-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D-printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the π-valve relative to the conventional value. Overall, the π-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.
Collapse
Affiliation(s)
- Pooya Azizian
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
- Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona Spain
| | - Jordi Ricart
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
| | - Joan M. Cabot
- Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain
| |
Collapse
|