1
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
2
|
George DE, Olatunde MO, Tepe JJ. Short and High-Yielding Synthesis of a Minimalist Diazirine-Alkyne Photo-Cross-Linker and Photoaffinity Labeling Derivatives. ACS OMEGA 2025; 10:3622-3626. [PMID: 39926512 PMCID: PMC11800027 DOI: 10.1021/acsomega.4c08497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Minimalist photo-cross-linker 1 and its derivatives are extensively utilized in photoaffinity labeling studies. However, obtaining compound 1 in high yield has traditionally required a lengthy synthetic process. In this paper, we present a concise and efficient method to synthesize 1 in just four steps, leveraging the "Normant reagent" as a pivotal component in our strategy. Additionally, we extended our synthetic approach to generate new derivatives of the fully functionalized diazirine tag, providing versatile handles for coupling with other small molecules. This work provides a quick and high-yielding approach to access photo-cross-linker 1 compared to previously reported approaches.
Collapse
Affiliation(s)
- Dare E. George
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Miracle O. Olatunde
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jetze J. Tepe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Oprea I, Smith TK. Click Chemistry Methodology: The Novel Paintbrush of Drug Design. ACS Chem Biol 2025; 20:19-32. [PMID: 39730316 PMCID: PMC11744672 DOI: 10.1021/acschembio.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Click chemistry is an immensely powerful technique for the synthesis of reliable and efficient covalent linkages. When undertaken in living cells, the concept is thereby coined bioorthogonal chemistry. Used in conjunction with the photo-cross-linking methodology, it serves as a sound strategy in the exploration of biological processes and beyond. Its broad scope has led to widespread use in many disciplines; however, this Review focuses on the use of click and bioorthogonal chemistry within medicinal chemistry, specifically with regards to drug development applications, namely, the use of DNA-encoded libraries as a novel technique for lead compound discovery, as well as the synthesis of antisense oligonucleotides and protein-drug conjugates. This Review aims to provide a critical perspective and a future outlook of this methodology, such as potential widespread use in cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Ioana Oprea
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| | - Terry K. Smith
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| |
Collapse
|
4
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Kalinin V, Padnya P, Stoikov I. Romanowsky staining: history, recent advances and future prospects from a chemistry perspective. Biotech Histochem 2024; 99:1-20. [PMID: 37929609 DOI: 10.1080/10520295.2023.2273860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Romanowsky staining was an important methodological breakthrough in diagnostic hematology and cytopathology during the late 19th and early 20th centuries; it has facilitated for decades the work of biologists, hematologists and pathologists working with blood cells. Despite more than a century of studying Romanowsky staining, no systematic review has been published that explains the chemical processes that produce the "Romanowsky effect" or "Romanowsky-Giemsa effect" (RGE), i.e., a purple coloration arising from the interaction of an azure dye with eosin and not due merely to their simultaneous presence. Our review is an attempt to build a bridge between chemists and biomedical scientists and to summarize the available data on methylene blue (MB) demethylation as well as the related reduction and decomposition of MB to simpler compounds by both light and enzyme systems and microorganisms. To do this, we analyze modern data on the mechanisms of MB demethylation both in the presence of acids and bases and by disproportionation due to the action of light. We also offer an explanation for why the RGE occurs only when azure B, or to a lesser extent, azure A is present by applying experimental and calculated physicochemical parameters including dye-DNA binding constants and electron density distributions in the molecules of these ligands. Finally, we discuss modern techniques for obtaining new varieties of Romanowsky dyes by modifying previously known ones. We hope that our critical literature study will help scientists understand better the chemical and physicochemical processes and mechanisms of cell staining with such dyes.
Collapse
Affiliation(s)
- Valeriy Kalinin
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
6
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
7
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Keller M, Petrov D, Gloger A, Dietschi B, Jobin K, Gradinger T, Martinelli A, Plais L, Onda Y, Neri D, Scheuermann J. Highly pure DNA-encoded chemical libraries by dual-linker solid-phase synthesis. Science 2024; 384:1259-1265. [PMID: 38870307 DOI: 10.1126/science.adn3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
The first drugs discovered using DNA-encoded chemical library (DEL) screens have entered late-stage clinical development. However, DEL technology as a whole still suffers from poor chemical purity resulting in suboptimal performance. In this work, we report a technique to overcome this issue through self-purifying release of the DEL after magnetic bead-based synthesis. Both the first and last building blocks of each assembled library member were linked to the beads by tethers that could be cleaved by mutually orthogonal chemistry. Sequential cleavage of the first and last tether, with washing in between, ensured that the final library comprises only the fully complete compounds. The outstanding purity attained by this approach enables a direct correlation of chemical display and encoding, allows for an increased chemical reaction scope, and facilitates the use of more diversity elements while achieving greatly improved signal-to-noise ratios in selections.
Collapse
Affiliation(s)
- Michelle Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dimitar Petrov
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Bastien Dietschi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Kilian Jobin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timon Gradinger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yuichi Onda
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Dickson P. DNA-Encoded Library Technology─A Catalyst for Covalent Ligand Discovery. ACS Chem Biol 2024; 19:802-808. [PMID: 38527941 DOI: 10.1021/acschembio.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The identification of novel covalent ligands for therapeutic purposes has long depended on serendipity, with dedicated hit finding techniques emerging only in the early 2000s. Advances in chemoproteomics have enabled robust characterization of putative drugs to derisk the unique liabilities associated with covalent hit molecules, leading to a renewed interest in this targeting modality. DNA-encoded library (DEL) technology has similarly emerged over the past two decades as a highly efficient method to identify new chemical equity toward protein targets of interest. A number of commercial and academic groups have reported methods in covalent DEL synthesis and hit identification; however, it is evident that there is still much to be done to fully realize the power of this technology for covalent ligand discovery. This perspective will explore the current approaches in covalent DEL technology and reflect on the next steps to advance this field.
Collapse
Affiliation(s)
- Paige Dickson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
11
|
Jin H, Cui D, Fan Y, Li G, Zhong Z, Wang Y. Recent advances in bioaffinity strategies for preclinical and clinical drug discovery: Screening natural products, small molecules and antibodies. Drug Discov Today 2024; 29:103885. [PMID: 38278476 DOI: 10.1016/j.drudis.2024.103885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.
Collapse
Affiliation(s)
- Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
12
|
Woodhead AJ, Erlanson DA, de Esch IJP, Holvey RS, Jahnke W, Pathuri P. Fragment-to-Lead Medicinal Chemistry Publications in 2022. J Med Chem 2024; 67:2287-2304. [PMID: 38289623 DOI: 10.1021/acs.jmedchem.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This Perspective is the eighth in an annual series that summarizes successful fragment-to-lead (F2L) case studies published each year. A tabulated summary of relevant articles published in 2022 is provided, and features such as target class, screening methods, and ligand efficiency are discussed both for the 2022 examples and for the combined examples over the years 2015-2022. In addition, trends and new developments in the field are summarized. In 2022, 18 publications described successful fragment-to-lead studies, including the development of three clinical compounds (MTRX1719, MK-8189, and BI-823911).
Collapse
Affiliation(s)
- Andrew J Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Wolfgang Jahnke
- Novartis Biomedical Research, Discovery Sciences, 4002 Basel, Switzerland
| | - Puja Pathuri
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
13
|
Rama-Garda R, Martin-Ortega MD, Sánchez ADJ, Priego J, de Blas J, Torrado A, Domínguez E, Haro R, Rivera-Sagredo A, Román JP, Lorite MJ, Johansson HE, Loza MI, Amigo J, Sobrino B, Lallena MJ, Toledo MÁ. Design, synthesis and validation of a new Crimped Head-Piece for DNA-Encoded libraries generation. Bioorg Med Chem 2024; 99:117596. [PMID: 38232459 DOI: 10.1016/j.bmc.2024.117596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Codification of DNA Encoded Libraries (DELs) is critical for successful ligand identification of molecules that bind a protein of interest (POI). There are different encoding strategies that permit, for instance, the customization of a DEL for testing single or dual pharmacophores (single strand DNA) or for producing and screening large diversity libraries of small molecules (double strand DNA). Both approaches challenges, either from the synthetic and encoding point of view, or from the selection methodology to be utilized for the screening. The Head-Piece contains the DNA sequence that is attached to a chemical compound, allowing the encoding of each molecule with a unique DNA tag. Designing the Head-Piece for a DNA-encoded library involves careful consideration of several key aspects including DNA barcode identity, sequence length and attachment chemistry. Here we describe a double stranded DNA versatile Head-Piece that can be used for the generation of single or dual pharmacophore libraries, but also shows other advanced DEL functionalities, stability and enlarged encoding capacity.
Collapse
Affiliation(s)
- Ramón Rama-Garda
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain; BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain.
| | - María Dolores Martin-Ortega
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - Julián Priego
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Jesús de Blas
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alicia Torrado
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Eduardo Domínguez
- Genomic Medicine, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña, Spain
| | - Rubén Haro
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alfonso Rivera-Sagredo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - José Pablo Román
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - María José Lorite
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - María Isabel Loza
- BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain
| | - Jorge Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - Beatriz Sobrino
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - María José Lallena
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Miguel Ángel Toledo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| |
Collapse
|
14
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
15
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
16
|
Fay EM, Newton A, Berney M, El‐Sagheer AH, Brown T, McGouran JF. Two-Step Validation Approach for Tools To Study the DNA Repair Enzyme SNM1A. Chembiochem 2023; 24:e202200756. [PMID: 36917742 PMCID: PMC10962688 DOI: 10.1002/cbic.202200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.
Collapse
Affiliation(s)
- Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Ailish Newton
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Mark Berney
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Tom Brown
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| |
Collapse
|
17
|
Abstract
The Human Genome Project ultimately aimed to translate DNA sequence into drugs. With the draft in hand, the Molecular Libraries Program set out to prosecute all genome-encoded proteins for drug discovery with automated high-throughput screening (HTS). This ambitious vision remains unfulfilled, even while innovations in sequencing technology have fully democratized access to genome-scale sequencing. Why? While the central dogma of biology allows us to chart the entirety of cellular metabolism through sequencing, there is no direct coding for chemistry. The rules of base pairing that relate DNA gene to RNA transcript and amino acid sequence do not exist for relating small-molecule structure with macromolecular binding partners and subsequently cellular function. Obtaining such relationships genome-wide is unapproachable via state-of-the-art HTS, akin to attempting genome-wide association studies using turn-of-the-millennium Sanger DNA sequencing.Our laboratory has been engaged in a multipronged technology development campaign to revolutionize molecular screening through miniaturization in pursuit of genome-scale drug discovery capabilities. The compound library was ripe for miniaturization: it clearly needed to become a consumable. We employed DNA-encoded library (DEL) synthesis principles in the development of solid-phase DELs prepared on microscopic beads, each harboring 100 fmol of a single library member and a DNA tag whose sequence describes the structure of the library member. Loading these DEL beads into 100 pL microfluidic droplets followed by online photocleavage, incubation, fluorescence-activated droplet sorting, and DNA sequencing of the sorted DEL beads reveals the chemical structures of bioactive compounds. This scalable library synthesis and screening platform has proven useful in several proof-of-concept projects involving current clinical targets.Moving forward, we face the problem of druggability and proteome-scale assay development. Developing biochemical or cellular assays for all genome-encoded targets is not scalable and likely impossible as most proteins have ill-defined or unknown activity and may not function outside of their native contexts. These are the dark undruggable expanses, and charting them will require advanced synthesis and analytical technologies that can generalize probe discovery, irrespective of mature protein function, to fulfill the Genome Project's vision of proteome-wide control of cellular pharmacology.
Collapse
|
18
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|