1
|
Fueyo-González F, Vilanova G, Ningoo M, Marjanovic N, González-Vera JA, Orte Á, Fribourg M. Small-molecule TIP60 inhibitors enhance regulatory T cell induction through TIP60-P300 acetylation crosstalk. iScience 2023; 26:108491. [PMID: 38094248 PMCID: PMC10716589 DOI: 10.1016/j.isci.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo Vilanova
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona Spain
| | - Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Marjanovic
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan A. González-Vera
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ángel Orte
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|