1
|
Wang Z, Qiu X, Wang H, Zhao W, Gull S, Lu H, Hao Z, Sun B, Zeng X, Liu X, Zhang HL, Chen Y, He T, Long G. Chiral Metal-Free Anti-Perovskite with Strong Chiroptical Nonlinearity. Angew Chem Int Ed Engl 2025; 64:e202420249. [PMID: 39671530 DOI: 10.1002/anie.202420249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
The nonlinear chiroptical properties of chiral metal halide perovskite has attracted substantial attention in recent years. In order to overcome the inherent limitations of metal halide, such as high costs, potential toxicity, challenges with recycling, especially the limited laser-induced damage threshold (LDT), we have successfully constructed the first chiral metal-free anti-perovskite, with the aim of utilizing it in second harmonic generation-circular dichroism (SHG-CD). Moreover, the anti-perovskite composed entirely of small organic ions typically display a more extensive transparent window, which could contribute a high LDT. Herein two chiral metal-free anti-perovskites, R/S-MCN [(R/S-MBA)6Cl(NH4Cl6)] were constructed, and exhibit strong second-harmonic generation response from 800 to 980 nm. The second-order nonlinear optical coefficient of the chiral metal-free anti-perovskite reaches 0.89 pm/V, which is higher than that of commercial Y-cut quartz. Most importantly, both R- and S-MCN exhibit a large nonlinear optical activity with a high SHG dissymmetry factor (gSHG-CD) of 0.60 and a high laser-induced damage threshold of 71 mJ/cm2, which is higher than that of most reported chiral perovskites. Our findings indicate that chiral metal-free anti-perovskite have the potential to be a valuable addition to the development of next-generation nonlinear chiroptical devices.
Collapse
Affiliation(s)
- Zhaoyu Wang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xin Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hebin Wang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wenkai Zhao
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Sehrish Gull
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Haolin Lu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zechen Hao
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xin Zeng
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guankui Long
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Sun C, Li D, Dan W, Yin J, Fei H. Mixed-Layered Lead Halide Frameworks with High Stability and Efficient Room-Temperature Phosphorescence. J Phys Chem Lett 2024; 15:8451-8458. [PMID: 39121497 DOI: 10.1021/acs.jpclett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Dongyang Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Jinlin Yin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Wen X, Yi G, Zhang Z, Guo C, Zeng H, Huang L, Zou G, Lin Z. Amine-directed synthesis, valence state control, and optical properties of two new organic-inorganic tin chlorides. Dalton Trans 2024; 53:13195-13200. [PMID: 39046463 DOI: 10.1039/d4dt01919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Two organic-inorganic tin chlorides, namely (C9H26N3Cl)SnCl4 (1) and (C9H26N3Cl)SnCl6 (2), were prepared via valence state control using N,N,N',N'',N''-pentamethyldiethylenetriamine as a structure-directing agent. The two compounds have zero-dimensional structures crystallized in non-centrosymmetric orthorhombic space group Cmc21 and P212121, respectively. In compound 1, the divalent tin ion forms a seesaw coordination configuration with four chloride ions, whereas in compound 2, the tetravalent tin ion forms an octahedral coordination configuration with six chloride ions. The two compounds show a moderate second-harmonic generation response under 1064 nm laser irradiation. Notably, compound 2 displays a bright orange luminescence with a photoluminescence quantum yield of 19.67%. Theoretical calculations were performed to gain insights into the optical properties of the two compounds.
Collapse
Affiliation(s)
- Xuemei Wen
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Gangji Yi
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Caihong Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
4
|
Caussin L, Jouaiti A, Chartrand D, Skene WG, Ferlay S. Tuning the dimensionality in chiral and racemic organic/tin hybrids with halides. Dalton Trans 2024; 53:12755-12763. [PMID: 39021128 DOI: 10.1039/d4dt01645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chiral 1D tin iodides EBASnI3 were synthesized while incorporating enantiomerically pure and racemic ethylbenzylammonium (EBA) cations between the 1D shared inorganic corners. The dimensionality was reduced to 0D when replacing iodine with bromine. In all the cases, the presence of hydrogen bonds was observed between the organic part and the inorganic part, while transfer of chirality was evidenced for the EBASnI3 enantiomerically pure compounds.
Collapse
Affiliation(s)
- Louis Caussin
- CNRS, CMC UMR 7140, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Cedex Strasbourg, France.
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués, Département de Chimie, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
- Institut Courtois, Université de Montréal, Montréal, Québec, Canada
| | - Abdelaziz Jouaiti
- CNRS, CMC UMR 7140, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Cedex Strasbourg, France.
| | - Daniel Chartrand
- Plateform de Rayons-X, Département de Chimie, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - W G Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués, Département de Chimie, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
- Institut Courtois, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Ferlay
- CNRS, CMC UMR 7140, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Cedex Strasbourg, France.
| |
Collapse
|
5
|
Nie F, Yan D. Zero-dimensional halide hybrid bulk glass exhibiting reversible photochromic ultralong phosphorescence. Nat Commun 2024; 15:5519. [PMID: 38951508 PMCID: PMC11217438 DOI: 10.1038/s41467-024-49886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Dynamically responsive materials, capable of reversible changes in color appearance and/or photoemission upon external stimuli, have attracted substantial attention across various fields. This study presents an effective approach wherein switchable modulation of photochromism and ultralong phosphorescence can be achieved simultaneously in a zero-dimensional organic-inorganic halide hybrid glass doped with 4,4´-bipyridine. The facile fabrication of large-scale glasses is accomplished through a combined grinding-melting-quenching process. The persistent luminescence can be regulated through the photochromic switch induced by photo-generated radicals. Furthermore, the incorporation of the aggregation-induced chirality effect generates intriguing circularly polarized luminescence, with an optical dissymmetry factor (glum) reaching the order of 10-2. Exploiting the dynamic ultralong phosphorescence, this work further achieves promising applications, such as three-dimensional optical storage, rewritable photo-patterning, and multi-mode anti-counterfeiting with ease. Therefore, this study introduces a smart hybrid glass platform as a new photo-responsive switchable system, offering versatility for a wide array of photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
6
|
Cui Y, Cao J, Lin J, Li C, Yao J, Liu K, Hou A, Guo Z, Zhao J, Liu Q. Advancing nonlinear optics: discovery and characterization of new non-centrosymmetric phenazine-based halides. Dalton Trans 2024; 53:10235-10243. [PMID: 38828765 DOI: 10.1039/d4dt01096e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Organic-inorganic metal halides (OIMHs) have drawn considerable attention due to their remarkable optoelectronic properties and substantial promise for nonlinear optical applications. In this research, phenazine has been selected as the organic cation because of its π-conjugated feature. Three compounds, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br, were synthesized. Initial space group assignments were centrosymmetric for (C12H9N2)PbCl3 and (C12H9N2)SbCl4. However, under 1550 nm laser excitation, (C12H9N2)PbCl3 and (C12H9N2)SbCl4 exhibited second harmonic generation intensities ∼1.7 times greater than that of the benchmark KH2PO4. Structural reevaluation ultimately confirmed non-centrosymmetric P1 and P21 space groups for (C12H9N2)PbCl3 and (C12H9N2)SbCl4, respectively. Upon excitation at 335 nm and 470 nm, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br emit fluorescence at room temperature. (C12H9N2)2InBr4·Br exhibits reversible phase transitions, showing potential for phase change energy storage. Our research underscores the critical role of comprehensive experimental validation in determining the precise crystallographic space groups and reveals the extensive potential of OIMHs as versatile candidates for advanced optoelectronic applications.
Collapse
Affiliation(s)
- Yibo Cui
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jiawei Lin
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunxiao Li
- Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyong Yao
- Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - An Hou
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Zhongnan Guo
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
7
|
Yan SF, Guo Y, Liu W, Guo SP, Wu J. Tellurium(IV) Halide Achieving Effective Nonlinear-Optical Activity: The Role of Chiral Ligands and Lattice Distortion. Inorg Chem 2024; 63:73-77. [PMID: 38153229 DOI: 10.1021/acs.inorgchem.3c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chiral organic-inorganic hybrid metal halides are a promising class of nonlinear-optical materials with unique optical properties and flexible crystal structures. However, the structures and properties of chiral hybrid tellurium halides, especially second harmonic generation (SHG), have not been reported. Here, by introducing chiral organic molecule (R/S)-methylbenzylammonium (R/S-MBA), we synthesized a pair of novel zero-dimensional (0D) chiral tellurium-based hybrid halides with noncentrosymmetric space group C2, (R/S-MBA)2TeCl6 (R/S-Cl). Single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectra confirm that R/S-Cl shows obvious enantiomer enrichment. Moreover, the resulting chiral products present an efficient SHG response. Interestingly, through manipulation of halogen atoms, two pairs of achiral tellurium halides, (R/S-MBA)2TeBr6 (R/S-Br) and (R/S-MBA)2TeI6 (R/S-I), were obtained, both of which crystallize in the centrosymmetric space group R3̅. It is noteworthy that R/S-I has a narrow band gap of 1.55 eV, which is smaller than that of most 0D metal halides and comparable to that of three-dimensional lead halide, showing its potential as a highly efficient light absorber.
Collapse
Affiliation(s)
- Shu-Fang Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiajing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
8
|
Guan J, Zheng Y, Cheng P, Han W, Han X, Wang P, Xin M, Shi R, Xu J, Bu XH. Free Halogen Substitution of Chiral Hybrid Metal Halides for Activating the Linear and Nonlinear Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38039190 DOI: 10.1021/jacs.3c09395] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.
Collapse
Affiliation(s)
- Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Peihan Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| |
Collapse
|
9
|
Wu HY, Hu CL, Xu MB, Chen QQ, Ma N, Huang XY, Du KZ, Chen J. From H 12C 4N 2CdI 4 to H 11C 4N 2CdI 3: a highly polarizable CdNI 3 tetrahedron induced a sharp enhancement of second harmonic generation response and birefringence. Chem Sci 2023; 14:9533-9542. [PMID: 37712033 PMCID: PMC10498671 DOI: 10.1039/d3sc03052k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, we identify a novel class of second-order nonlinear optical (NLO) crystals, non-π-conjugated piperazine (H10C4N2, PIP) metal halides, represented by two centimeter-sized, noncentrosymmetric organic-inorganic metal halides (OIMHs), namely H12C4N2CdI4 (P212121) and H11C4N2CdI3 (Cc). H12C4N2CdI4 is the first to be prepared, and its structure contains a CdI4 tetrahedron, which led to a poor NLO performance, including a weak and non-phase-matchable second harmonic generation (SHG) response of 0.5 × KH2PO4 (KDP), a small birefringence of 0.047 @1064 nm and a narrow bandgap of 3.86 eV. Moreover, H12C4N2CdI4 is regarded as the model compound, and we further obtain H11C4N2CdI3via the replacement of CdI4 with a highly polarizable CdNI3 tetrahedron, which results in a sharp enhancement of SHG response and birefringence. H11C4N2CdI3 exhibits a promising NLO performance including 6 × KDP, 4.10 eV, Δn = 0.074 @1064 nm and phase matchability, indicating that it is the first OIMH to simultaneously exhibit strong SHG response (>5 × KDP) and a wide bandgap (>4.0 eV). Our work presents a novel direction for designing high-performance NLO crystals based on organic-inorganic halides and provides important insights into the role of the hybridized tetrahedron in enhancing the SHG response and birefringence.
Collapse
Affiliation(s)
- Huai-Yu Wu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Miao-Bin Xu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Nan Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|