1
|
Komal Zafar H, Zainab S, Masood M, Sohail M, Shoaib Ahmad Shah S, Karim MR, O'Mullane A, Ostrikov KK, Will G, Wahab MA. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications. CHEM REC 2024; 24:e202300161. [PMID: 37582638 DOI: 10.1002/tcr.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.
Collapse
Affiliation(s)
- Hafiza Komal Zafar
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sara Zainab
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Maria Masood
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Mohammad R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), College of Engineering, King Saud University, P. O. Box 800, Riyadh, 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anthony O'Mullane
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Geoffrey Will
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Boulanger N, Li G, Bakhiia T, Maslakov KI, Romanchuk AY, Kalmykov SN, Talyzin AV. Super-oxidized "activated graphene" as 3D analogue of defect graphene oxide: Oxidation degree vs U(VI) sorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131817. [PMID: 37327606 DOI: 10.1016/j.jhazmat.2023.131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Porous carbons are not favorable for sorption of heavy metals and radionuclides due to absence of suitable binding sites. In this study we explored the limits for surface oxidation of "activated graphene" (AG), porous carbon material with the specific surface area of ∼2700 m2/g produced by activation of reduced graphene oxide (GO). Set of "Super-Oxidized Activated Graphene" (SOAG) materials with high abundance of carboxylic groups on the surface were produced using "soft" oxidation. High degree of oxidation comparable to standard GO (C/O=2.3) was achieved while keeping 3D porous structure with specific surface area of ∼700-800 m2/. The decrease in surface area is related to the oxidation-driven collapse of mesopores while micropores showed higher stability. The increase in the oxidation degree of SOAG is found to result in progressively higher sorption of U(VI), mostly related to the increase in abundance of carboxylic groups. The SOAG demonstrated extraordinarily high sorption of U(VI) with the maximal capacity up to 5400 μmol/g, that is 8.4 - fold increase compared to non-oxidized precursor AG, ∼50 -fold increase compared to standard graphene oxide and twice higher than extremely defect-rich graphene oxide. The trends revealed here show a way to further increase sorption if similar oxidation degree is achieved with smaller sacrifice of surface area.
Collapse
Affiliation(s)
| | - Gui Li
- Department of Physics, Umeå University, S-90187 Umeå, Sweden
| | - Tamuna Bakhiia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Anna Yu Romanchuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.
| | | |
Collapse
|
3
|
Li G, Iakunkov A, Boulanger N, Lazar OA, Enachescu M, Grimm A, Talyzin AV. Activated carbons with extremely high surface area produced from cones, bark and wood using the same procedure. RSC Adv 2023; 13:14543-14553. [PMID: 37188252 PMCID: PMC10177221 DOI: 10.1039/d3ra00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Activated carbons have been previously produced from a huge variety of biomaterials often reporting advantages of using certain precursors. Here we used pine cones, spruce cones, larch cones and a pine bark/wood chip mixture to produce activated carbons in order to verify the influence of the precursor on properties of the final materials. The biochars were converted into activated carbons with extremely high BET surface area up to ∼3500 m2 g-1 (among the highest reported) using identical carbonization and KOH activation procedures. The activated carbons produced from all precursors demonstrated similar specific surface area (SSA), pore size distribution and performance to electrodes in supercapacitors. Activated carbons produced from wood waste appeared to be also very similar to "activated graphene" prepared by the same KOH procedure. Hydrogen sorption of AC follows expected uptake vs. SSA trends and energy storage parameters of supercapacitor electrodes prepared from AC are very similar for all tested precursors. It can be concluded that the type of precursor (biomaterial or reduced graphene oxide) has smaller importance for producing high surface area activated carbons compared to details of carbonization and activation. Nearly all kinds of wood waste provided by the forest industry can possibly be converted into high quality AC suitable for preparation of electrode materials.
Collapse
Affiliation(s)
- Gui Li
- Department of Physics, Umeå University Umeå SE-90187 Sweden
| | - Artem Iakunkov
- Department of Physics, Umeå University Umeå SE-90187 Sweden
| | | | - Oana Andreea Lazar
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest Splaiul Independentei 313 Bucharest 060032 Romania
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, University Politehnica of Bucharest Splaiul Independentei 313 Bucharest 060032 Romania
| | - Alejandro Grimm
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences Umeå SE-901 83 Sweden
| | | |
Collapse
|
4
|
Liu H, Zhang F, Lin X, Wu J, Huang J. A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H 3PO 4 for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:786-795. [PMID: 36756496 PMCID: PMC9890899 DOI: 10.1039/d2na00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/02/2023] [Accepted: 12/06/2022] [Indexed: 05/20/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of H3PO4 and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g-1 at 1 A g-1) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g-1) and an impressive energy density as large as ∼71 W h kg-1 at a power density of 1.2 kW kg-1. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Fumin Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Xinyu Lin
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| |
Collapse
|