1
|
Li D, Zhang C, Xiong Q, Liu W, Tang Y, Liang L, Pu K, Duan H. Elongated Magnetic Nanorobots with Multi-Enzymatic Cascades for Active In Vivo Tumor Targeting and Enhanced Chemodynamic Therapy. ACS NANO 2025; 19:15040-15054. [PMID: 40223775 DOI: 10.1021/acsnano.5c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Targeted delivery of therapeutic agents to malignant tissues is crucial for enhancing clinical outcomes and reducing side effects. Magnetic nanorobots (MNRs) present a promising strategy for controlled delivery, leveraging external magnetic fields to achieve precise in vivo targeting. This work develops elongated MNRs comprising linearly arranged magnetic nanoparticles linked by metal-polyphenol complexes (MPCs) for magnetic-field-directed active tumor targeting and synergistic tumor therapy. The MNRs are created by assembling 30 nm Fe3O4 nanoparticles, tannic acid, and ferrous ions (Fe2+) under a uniform magnetic field, resulting in elongated chain-like structures fixed by MPCs, which also promotes peroxidase-like activity. These structures show a greater magnetic response than individual nanoparticles, offering flexibility in magnetic manipulation. The MPCs coating allows tailored surface modifications with glucose oxidase, copper ions (Cu2+), and human serum albumin (HSA), producing colloidally stable MNRs with a built-in multienzymatic cascade (MNRs@GOx/Cu/HSA) that consumes glucose, generates •OH, and depletes the antioxidant glutathione (GSH). Collectively, surface-engineered multifunctional MNRs demonstrate improved in vivo tumor targeting driven by external magnetic fields, leading to efficient localized chemodynamic therapy. The tailored structural and functional properties of the developed MNRs render them suitable for targeted cargo delivery, minimally invasive surgery, and localized treatments in disease sites.
Collapse
Affiliation(s)
- Di Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Qirong Xiong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Wylie Liu
- Raffles Institution, 1 Raffles Institution Lane, Singapore 575954, Singapore
| | - Yingwei Tang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
2
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
4
|
Ha W, Ma R, Kang JY, Iradukunda Y, Shi YP. Green and shape-tunable synthesis of ellagic acid crystalline particles by tannic acid for neuroprotection against oxidative stress. Biomater Sci 2024; 12:3610-3621. [PMID: 38842122 DOI: 10.1039/d4bm00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Oxidative stress (OS) plays an important role in the emergence and prevention of neurodegenerative diseases, such as Alzheimer's disease (AD). Excess reactive oxygen species (ROS) accumulated in a neuronal cell can lead to OS, producing cell injury and death. Seeking nanoantioxidants against AD-related oxidative stress has attracted a lot of attention, especially those potential antioxidant agents derived from natural polyphenols. However, the transformation of abundant plant polyphenols to antioxidative biomaterials against OS is still challenging. In this work, we report a new method to transform amorphous tannic acid (TA) into tailorable shaped ellagic acid (EA) crystalline particles without using an organic solvent. EA crystalline particles were generated from TA, which underwent a chemical transformation, in situ metal phenolic coordination and acid-induced assembly process, and the size and shape could be controlled by varying the amount of acid. As-prepared EA crystalline particles showed excellent stability in water and lysosomal mimicking fluid and possess unique fluorescence properties and a strong response in mass spectrometry, which is beneficial for their imaging analysis in cells and tissues. More importantly, EA particles have shown significant H2O2-related ROS scavenging ability, a high cellular uptake capacity, an excellent neuroprotective effect in PC12 cells, a high drug loading capacity and BBB permeability to enter the brain. Our study suggested that the EA crystalline particles show great potential for OS-mediated AD treatment.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
Wang L, Zhao Z, Li X, Zhao X, Li S, Li H. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials. Int J Biol Macromol 2024; 271:132698. [PMID: 38824104 DOI: 10.1016/j.ijbiomac.2024.132698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Ecofriendly fabrics with antibacterial and anti-adhesion properties have been attracted an increasing attention in recent years. Herein, natural menthol modified polyacrylate (PMCA) antibacterial adhesion agent was synthesized by esterification and polymerisation while natural pterostilbene-grafted-chitosan (PGC) antibacterial agent was prepared through Mannich reaction. The antibacterial and anti-adhesion cotton fabric was fabricated through durable PMCA dip finishing and then layer-by-layer self-assembly of PGC. The results showed that the antibacterial adhesion rates and antibacterial rates of the dual-function cotton fabric against Staphylococcus aureus and Escherichia coli reached up to 99.9 %. Its antibacterial adhesion rates improved by 36.1 % and 40.1 % in comparison with those of cotton fabric treated by menthol alone. Meanwhile against S. aureus, the dual-function cotton fabrics improved the antibacterial rates by 56.7 % and 36.4 %, respectively, from those of chitosan- and pterostilbene-treated fabrics. Against E. coli, the improvements were 89.4 % and 24.8 %, respectively. After 20 household washings, the dual-function cotton fabric maintained >80 % of its original anti-adhesion and antibacterial rates against both species. The dual-function cotton fabric also possessed safe and excellent wearability.
Collapse
Affiliation(s)
- Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314500, PR China.
| | - Zhiqiang Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangyu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaomin Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuokang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huijun Li
- Hangzhou Huasi Xiasha Textile Technology Co., LTD., Hangzhou 311199, PR China
| |
Collapse
|
6
|
Cheng J, Zhang H, Lu K, Zou Y, Jia D, Yang H, Chen H, Zhang Y, Yu Q. Bi-functional quercetin/copper nanoparticles integrating bactericidal and anti-quorum sensing properties for preventing the formation of biofilms. Biomater Sci 2024; 12:1788-1800. [PMID: 38390988 DOI: 10.1039/d4bm00034j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Biofilms formed by pathogenic bacteria present a persistent risk to human health. While the eradication of matured biofilms remains a formidable challenge, delaying or preventing their formation, which is coordinately regulated by quorum sensing (QS), presents a simpler and more advantageous strategy. Quercetin, a naturally occurring compound with anti-QS properties, has the potential to act as an antibiofilm agent. However, it is plagued by certain inherent drawbacks, including poor water solubility and limited bioavailability. Furthermore, solely blocking QS is not enough to prevent biofilm formation because it lacks bactericidal properties. To address these difficulties, we fabricated bi-functional nanoparticles through the co-assembly of quercetin and copper ions in a facile manner. The resulting quercetin/copper nanoparticles (QC NPs) demonstrated minimal cytotoxicity and hemolysis in vitro. In response to the low pH of microenvironments that were populated by bacterial colonies, the QC NPs underwent disassembly to release copper ions and quercetin. The former exterminated bacteria by disrupting the integrity of the cell membrane, while the latter disrupted the processes involved in QS that are responsible for the biofilm by downregulating the expression of specific genes, effectively preventing the formation of biofilms by both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. In addition, the QC NPs were integrated into a bacterial cellulose membrane. The composite membrane proved to be highly effective at inhibiting biofilm formation in vitro and demonstrated the ability to reduce inflammatory responses and accelerate the healing of bacteria-infected wounds in vivo. Overall, the bi-functional QC NPs hold great potential for use in addressing the challenges associated with the management of bacterial biofilms.
Collapse
Affiliation(s)
- Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Hong Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
7
|
Liu Z, Ma Y, Ye J, Li G, Kang X, Xie W, Wang X. Drug delivery systems for enhanced tumour treatment by eliminating intra-tumoral bacteria. J Mater Chem B 2024; 12:1194-1207. [PMID: 38197141 DOI: 10.1039/d3tb02362a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cancer remains one of the serious threats to human health. The relationship between bacteria and various tumours has been widely reported in recent years, and studies on intra-tumoral bacteria have become important as intra-tumoral bacteria directly affect the tumorigenesis, progression, immunity and metastatic processes. Therefore, eliminating these commensal intra-tumoral bacteria while treating tumour is expected to be a potential strategy to further enhance the clinical outcome of tumour therapy. Drug delivery systems (DDSs) are widely used to deliver antibiotics and chemotherapeutic drugs for antibacterial and anticancer applications, respectively. Thus, this review firstly provides a comprehensive summary of the association between intra-tumoral bacteria and a host of tumours, followed by a description of advanced DDSs for improving the therapeutic efficacy of cancer treatment through the elimination of intra-tumoral bacteria. It is hoped that this review will provide guidelines for the therapeutic and "synergistic antimicrobial and antitumour" drug delivery strategy.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yige Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinxin Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Li Y, Li J, Li M, Sun J, Shang X, Ma Y. Biological mechanism of ZnO nanomaterials. J Appl Toxicol 2024; 44:107-117. [PMID: 37518903 DOI: 10.1002/jat.4522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Modern nanotechnology has made zinc oxide nanomaterials (ZnO NMts) multifunctional, stable, and low cost, enabling them to be widely used in commercial and biomedical fields. With its wide application, the risk of human direct contact and their release into the environment also increases. This review aims to summarize the toxicity studies of ZnO NMts in vivo, including neurotoxicity, inhalation toxicity, and reproductive toxicity. The antibacterial and antiviral mechanisms of ZnO NMts in vitro and the toxicity to eukaryotic cells were summarized. The summary found that it was mainly related to reactive oxygen species (ROS) produced by oxidative stress. It also discusses the potential harm to body and the favorable prospects of the widespread use of antibacterial and antiviral in the future medical field. The review also emphasizes that the dosage and use method of ZnO NMts will be the focus of future biomedical research.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jiwen Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Xiaofen Shang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
9
|
Li Y, Wang J, Tang Y, Lu S, Lv Y, Li W, Zhang M, Yu Y. Stimuli-responsive ultra-small vanadate prodrug nanoparticles with NIR photothermal properties to precisely inhibit Na/K-ATPase for enhanced cancer therapy. NANOSCALE 2023; 15:9116-9122. [PMID: 37129433 DOI: 10.1039/d2nr07117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inhibition of Na/K-ATPase is a promising cancer treatment owing to the essential role of Na/K-ATPase in maintaining various cellular functions. The potent Na/K-ATPase inhibitor, vanadate(V) (termed as V(V)), has exhibited efficient anticancer effects. However, nonspecific inhibition using V(V) results in serious side effects, which hinder its clinical application. Here, bovine serum albumin (BSA)-modified ultra-small vanadate prodrug nanoparticles (V(IV) NPs) were synthesized via a combined reduction-coordination strategy with a natural polyphenol tannic acid (TA). A lower systemic toxicity of V(IV) NPs is achieved by strong metal-polyphenol coordination interactions. An efficient V(V) activation is realized by reactive oxygen species (ROS) at the tumor site. Furthermore, V(IV) NPs show excellent photothermal properties in the near-infrared (NIR) region. By NIR irradiation at the tumor site for mild hyperthermia, selective enhancement of the interactions between V(V) and Na/K-ATPase achieves stronger inhibition of Na/K-ATPase for robust cell killing effect. Altogether, V(IV) NPs specifically inhibit Na/K-ATPase in cancer cells with negligible toxicity to normal tissues, thus making them a promising candidate for clinical applications of Na/K-ATPase inhibition.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujing Tang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing, 100013, China
| | - Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|