1
|
Donadoni E, Siani P, Gambari S, Campi D, Frigerio G, Di Valentin C. Optimizing Polyethylene Glycol Coating for Stealth Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19304-19316. [PMID: 40125822 PMCID: PMC11969435 DOI: 10.1021/acsami.4c21303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Nanodiamonds (NDs) have emerged as potential candidates for versatile platforms in nanomedicine, offering unique properties that enhance their utility in drug delivery, imaging, and therapeutic applications. To improve their biocompatibility and nanomedical applicability, NDs are coated with organic polymer chains, such as poly(ethylene glycol) (PEG), which are well known to prolong their blood-circulating lifetime by reducing the surface adsorption of serum proteins. Theoretical simulations are useful tools to define, at the atomic level, the optimal parameters that guide the presentation of the coating chains in the biological environment and the interaction of coated NDs with proteins. In this work, we perform atomistic molecular dynamics (MD) simulations of several PEGylated spherical ND models immersed in a realistic physiological medium. In particular, we evaluate the effect of the polymer chain's terminal group, length, grafting density, and the ND core dimension on both the structural properties of the PEG coating and the interaction of the nanoconjugates with the aqueous phase. Moreover, we investigate the role played by the chemical nature of the core material through a comparative analysis with a PEGylated spherical titanium dioxide (TiO2) nanoparticle (NP). Among all the parameters evaluated, we find that the PEG grafting density, the PEG chain length, and the NP core material are key factors in determining the dynamic behavior of PEGylated nanosystems in solution, whereas the PEG terminal group and the ND dimension only play a marginal role. These factors can be strategically adjusted to identify the optimal conditions for enhanced clinical performance. Finally, we prove that the PEG coating prevents the aggregation of two ND particles. We believe that this computational study will provide valuable insights to the experimental community, supporting the rational design of polymer-coated inorganic NPs for more efficient nanomedical applications.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
- BioNanoMedicine
Center NANOMIB, University of Milano-Bicocca, Milano 20125, Italy
| | - Paulo Siani
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
- BioNanoMedicine
Center NANOMIB, University of Milano-Bicocca, Milano 20125, Italy
| | - Simone Gambari
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| | - Davide Campi
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| | - Giulia Frigerio
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
- BioNanoMedicine
Center NANOMIB, University of Milano-Bicocca, Milano 20125, Italy
| | - Cristiana Di Valentin
- Department
of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
- BioNanoMedicine
Center NANOMIB, University of Milano-Bicocca, Milano 20125, Italy
| |
Collapse
|
2
|
Wu W, Li Y, Liu Q, Liu T, Zhao Y, Shao H, Ren P, Tang Y, Feng J, Wang Y, Sun G, Liu H, Bai Y, Chen F. Dual-Targeted Drug Delivery to Myeloid Leukemia Cells via Complement- and Transferrin-Based Protein Corona. NANO LETTERS 2025; 25:147-156. [PMID: 39694635 DOI: 10.1021/acs.nanolett.4c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Although traditionally regarded as an impediment, the protein corona can facilitate the advancement of targeted drug delivery systems. This study presents an innovative approach for targeting acute myeloid leukemia (AML) using nanoparticles with agglutinated protein (NAPs). Agglutinated transferrin and C3b in NAPs selectively bind to CD71 and CD11b, receptors that are overexpressed on myeloid leukemic cells compared to nonmalignant cells. In vitro, NAPs achieved a 73.9% doxorubicin (DOX) uptake in leukemic cells, compared to 6.19% for the free drug, while significantly reducing off-target accumulation in normal cells from 42.9% to 5.76%. In vivo, the distribution of NAPs correlated to the organ infiltration pattern of leukemic cells. NAPs demonstrated antileukemic activity in both in vitro and in vivo NSG mouse models, inducing cell death via apoptosis and ferroptosis. In conclusion, NAP-mediated targeted drug delivery represents a promising therapeutic strategy for AML, enhancing treatment efficacy and minimizing off-target effects.
Collapse
Affiliation(s)
- Wen Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Tao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yanan Zhao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Hui Shao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yueyang Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Jiayi Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Yihan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, P. R. China
| | - Haiyan Liu
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Yuansong Bai
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| |
Collapse
|
3
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
4
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
6
|
Donadoni E, Siani P, Frigerio G, Milani C, Cui Q, Di Valentin C. The effect of polymer coating on nanoparticles' interaction with lipid membranes studied by coarse-grained molecular dynamics simulations. NANOSCALE 2024. [PMID: 38646798 DOI: 10.1039/d4nr00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nanoparticles' (NPs) permeation through cell membranes, whether it happens via passive or active transport, is an essential initial step for their cellular internalization. The NPs' surface coating impacts the way they translocate through the lipid bilayer and the spontaneity of the process. Understanding the molecular details of NPs' interaction with cell membranes allows the design of nanosystems with optimal characteristics for crossing the lipid bilayer: computer simulations are a powerful tool for this purpose. In this work, we have performed coarse-grained molecular dynamics simulations and free energy calculations on spherical titanium dioxide NPs conjugated with polymer chains of different chemical compositions. We have demonstrated that the hydrophobic/hydrophilic character of the chains, more than the nature of their terminal group, plays a crucial role in determining the NPs' interaction with the lipid bilayer and the thermodynamic spontaneity of NPs' translocation from water to the membrane. We envision that this computational work will be helpful to the experimental community in terms of the rational design of NPs for efficient cell membrane permeation.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Carolina Milani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milan, Italy.
- BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| |
Collapse
|
7
|
Li L, Zhang X, Ren Y, Yuan Q, Wang Y, Bao B, Li M, Tang Y. Chemiluminescent Conjugated Polymer Nanoparticles for Deep-Tissue Inflammation Imaging and Photodynamic Therapy of Cancer. J Am Chem Soc 2024; 146:5927-5939. [PMID: 38381576 DOI: 10.1021/jacs.3c12132] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Deep-tissue optical imaging and photodynamic therapy (PDT) remain a big challenge for the diagnosis and treatment of cancer. Chemiluminescence (CL) has emerged as a promising tool for biological imaging and in vivo therapy. The development of covalent-binding chemiluminescence agents with high stability and high chemiluminescence resonance energy transfer (CRET) efficiency is urgent. Herein, we design and synthesize an unprecedented chemiluminescent conjugated polymer PFV-Luminol, which consists of conjugated polyfluorene vinylene (PFV) main chains and isoluminol-modified side chains. Notably, isoluminol groups with chemiluminescent ability are covalently linked to main chains by amide bonds, which dramatically narrow their distance, greatly improving the CRET efficiency. In the presence of pathologically high levels of various reactive oxygen species (ROS), especially singlet oxygen (1O2), PFV-Luminol emits strong fluorescence and produces more ROS. Furthermore, we construct the PFV-L@PEG-NPs and PFV-L@PEG-FA-NPs nanoparticles by self-assembly of PFV-Luminol and amphiphilic copolymer DSPE-PEG/DSPE-PEG-FA. The chemiluminescent PFV-L@PEG-NPs nanoparticles exhibit excellent capabilities for in vivo imaging in different inflammatory animal models with great tissue penetration and resolution. In addition, PFV-L@PEG-FA-NPs nanoparticles show both sensitive in vivo chemiluminescence imaging and efficient chemiluminescence-mediated PDT for antitumors. This study paves the way for the design of chemiluminescent probes and their applications in the diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuxin Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuze Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
8
|
Frigerio G, Donadoni E, Siani P, Vertemara J, Motta S, Bonati L, Gioia LD, Valentin CD. Mechanism of RGD-conjugated nanodevice binding to its target protein integrin α Vβ 3 by atomistic molecular dynamics and machine learning. NANOSCALE 2024; 16:4063-4081. [PMID: 38334981 DOI: 10.1039/d3nr05123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Active targeting strategies have been proposed to enhance the selective uptake of nanoparticles (NPs) by diseased cells, and recent experimental findings have proven the effectiveness of this approach. However, no mechanistic studies have yet revealed the atomistic details of the interactions between ligand-activated NPs and integrins. As a case study, here we investigate, by means of advanced molecular dynamics simulations (MD) and machine learning methods (namely equilibrium MD, binding free energy calculations and training of self-organized maps), the interaction of a cyclic-RGD-conjugated PEGylated TiO2 NP (the nanodevice) with the extracellular segment of integrin αVβ3 (the target), the latter experimentally well-known to be over-expressed in several solid tumors. Firstly, we proved that the cyclic-RGD ligand binding to the integrin pocket is established and kept stable even in the presence of the cumbersome realistic model of the nanodevice. In this respect, the unsupervised machine learning analysis allowed a detailed comparison of the ligand/integrin binding in the presence and in the absence of the nanodevice, which unveiled differences in the chemical features. Then, we discovered that unbound cyclic RGDs conjugated to the NP largely contribute to the interactions between the nanodevice and the integrin. Finally, by increasing the density of cyclic RGDs on the PEGylated TiO2 NP, we observed a proportional enhancement of the nanodevice/target binding. All these findings can be exploited to achieve an improved targeting selectivity and cellular uptake, and thus a more successful clinical outcome.
Collapse
Affiliation(s)
- Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
- BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Italy
| |
Collapse
|
9
|
Ramezani F, Moghadasi M, Shamsasenjan K, Narmani A. Folic Acid-Decorated Chitosan-PLGA Nanobiopolymers for Targeted Drug Delivery to Acute Lymphoblastic Leukemia Cells: In Vitro Studies. Technol Cancer Res Treat 2024; 23:15330338241308077. [PMID: 39711084 DOI: 10.1177/15330338241308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVES This study developed a drug delivery system (DDS) using folic acid (FA)-functionalized chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanocarriers for targeted sodium butyrate (NB) delivery to leukemia cells (NALM6). The goal was to enhance NB's therapeutic efficacy while reducing its cytotoxicity to non-malignant cells. METHODS FA-CS-PLGA nanocarriers were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Encapsulation efficiency, release kinetics, cytotoxicity, and apoptosis induction were assessed using MTT assays and flow cytometry in NALM6 cells. RESULTS The FA-CS-PLGA nanocarriers had a surface charge of 34.2 ± 0.12 mV and a size range of 40-60 nm. Encapsulation efficiency was 16%, with 16% of NB released within the first 4 h. MTT assays showed a reduction in leukemia cell viability to 26% after 24 h with 400 nM FA-CS-PLGA-NB, compared to over 50% viability with pure NB. The IC50 was around 300 nM. Flow cytometry revealed that FA-CS-PLGA-NB induced apoptosis in over 20% of leukemia cells, far exceeding the 5% induced by unmodified NB. CONCLUSION FA-CS-PLGA nanocarriers show significant promise as a targeted DDS for leukemia therapy, enhancing NB delivery to leukemia cells and improving therapeutic efficacy while minimizing off-target toxicity. These results support further in vivo studies and potential clinical applications.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Zhu J, Yang Y, Wang J, Hong W, Li Y, Wang Z, Li K. Dual Responsive Magnetic Drug Delivery Nanomicelles with Tumor Targeting for Enhanced Cancer Chemo/Magnetothermal Synergistic Therapy. Int J Nanomedicine 2023; 18:7647-7660. [PMID: 38111845 PMCID: PMC10726825 DOI: 10.2147/ijn.s436414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Stimulus-responsive nanocarrier systems are promising in cancer treatment. They improve drug stability and facilitate controlled drug release. However, single-responsive nanocarriers still face insufficient tumor targeting and low efficacy. Methods In this study, we synthesized folate-modified DSPE-PEOz nanomicelles with PEG chains and loaded them with magnetic iron particles and doxorubicin (DOX). Folic acid (FA) was employed as a ligand to target cancer cells actively. The nanomicelles are biocompatible and acid-sensitive drug carriers. Magnetic field-responsive nanoparticles enable moderately controlled magnetothermal therapy of tumors regardless of tumor location. The pH/magnetic field dual-responsive nanomicelles shed their PEG layer in response to tumor tissue acidity and react to magnetic fields through magnetothermal effects. Results In vitro and in vivo experiments demonstrated that the nanomicelles could efficiently target cancer cells, release drugs in response to pH changes, and enhance drug uptake through magnetothermal effects. Discussion The dual-responsive magnetic nanomicelles are expected to enhance the anti-cancer efficacy of chemo/magnetothermal synergistic therapy.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun’an First People’s Hospital, Zhejiang Provincial People’s Hospital Chun’an Branch, Hangzhou, Zhejiang, People’s Republic of China
| | - Yimin Yang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Jian Wang
- Clinical Laboratory of Chun’an First People’s Hospital, Zhejiang Provincial People’s Hospital Chun’an Branch, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenzhong Hong
- Clinical Laboratory of Chun’an First People’s Hospital, Zhejiang Provincial People’s Hospital Chun’an Branch, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiping Li
- Clinical Laboratory of Chun’an First People’s Hospital, Zhejiang Provincial People’s Hospital Chun’an Branch, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Donadoni E, Frigerio G, Siani P, Motta S, Vertemara J, De Gioia L, Bonati L, Di Valentin C. Molecular Dynamics for the Optimal Design of Functionalized Nanodevices to Target Folate Receptors on Tumor Cells. ACS Biomater Sci Eng 2023; 9:6123-6137. [PMID: 37831005 PMCID: PMC10646887 DOI: 10.1021/acsbiomaterials.3c00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Atomistic details on the mechanism of targeting activity by biomedical nanodevices of specific receptors are still scarce in the literature, where mostly ligand/receptor pairs are modeled. Here, we use atomistic molecular dynamics (MD) simulations, free energy calculations, and machine learning approaches on the case study of spherical TiO2 nanoparticles (NPs) functionalized with folic acid (FA) as the targeting ligand of the folate receptor (FR). We consider different FA densities on the surface and different anchoring approaches, i.e., direct covalent bonding of FA γ-carboxylate or through polyethylene glycol spacers. By molecular docking, we first identify the lowest energy conformation of one FA inside the FR binding pocket from the X-ray crystal structure, which becomes the starting point of classical MD simulations in a realistic physiological environment. We estimate the binding free energy to be compared with the existing experimental data. Then, we increase complexity and go from the isolated FA to a nanosystem decorated with several FAs. Within the simulation time framework, we confirm the stability of the ligand-receptor interaction, even in the presence of the NP (with or without a spacer), and no significant modification of the protein secondary structure is observed. Our study highlights the crucial role played by the spacer, FA protonation state, and density, which are parameters that can be controlled during the nanodevice preparation step.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Giulia Frigerio
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Paulo Siani
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Stefano Motta
- Dipartimento
di Scienze dell’Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Jacopo Vertemara
- Dipartimento
di Biotecnologie e Bioscienze, Università
di Milano-Bicocca, Piazza
della Scienza 1, 20126 Milano, Italy
| | - Luca De Gioia
- Dipartimento
di Biotecnologie e Bioscienze, Università
di Milano-Bicocca, Piazza
della Scienza 1, 20126 Milano, Italy
| | - Laura Bonati
- Dipartimento
di Scienze dell’Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
- BioNanoMedicine
Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, 20854 Vedano al Lambro, Italy
| |
Collapse
|
12
|
He Y, Wu D, Zhang X. Bottom-up on-surface synthesis based on click-functionalized peptide bundles. NANOSCALE 2023; 15:8996-9002. [PMID: 37144607 DOI: 10.1039/d3nr01070h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-surface synthesis is a modern technique for the preparation of atomically low-dimensional molecular nanostructures. However, most nanomaterials grow horizontally on the surface, and the step-by-step longitudinally controllable covalent bonding reaction on the surface is rarely reported. Here, we successfully achieved bottom-up on-surface synthesis by using coiled-coil homotetrameric peptide bundles called 'bundlemers' as building blocks. Rigid nano-cylindrical bundlemer with two click-reactive functionalities at each end can be grafted vertically onto the surface or another bundlemer with complementary clickable groups by click reaction at one end, thus enabling the longitudinal bottom-up synthesis of rigid rods with an exact number of bundlemers (up to 6) on the surface. Moreover, we can graft linear poly(ethylene glycol) (PEG) to one terminal of rigid rods to obtain rod-PEG hybrid nanostructures that can be released from the surface under specific conditions. Interestingly, rod-PEG nanostructures consisting of different numbers of bundles can self-assemble in water into different nano-hyperstructures. In general, the bottom-up on-surface synthesis strategy presented here can provide a simple and accurate method to manufacture a variety of nanomaterials.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
- West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
13
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|