1
|
Ye J, Dai Y, Liu W, Xu J, Li J, Chen M, Yang S, Li Q, Du Y, Chai J, Zhu M. Phosphine-induced conversion from Au 36 to Au 32 for constructing a high-performance CO 2RR catalyst. Dalton Trans 2025. [PMID: 40384284 DOI: 10.1039/d5dt00604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Taking Au36(CHT)24 (Au36 for short) as a precursor, a Au32(CHT)20(TFP) (Au32 for short) nanocluster is obtained with the aid of a phosphine-mediated approach. Structural analysis shows that Au32 is obtained by modifying and transforming the surface structure of the parent Au36 nanocluster, including the removal of a surface layer of the core structure and the rearrangement of the surface motifs. Most importantly, this structural transformation results in a change in the position of some of the surface motifs, thus exposing the active domain with bare core metal atoms. The electrocatalytic CO2 reduction reaction is introduced to investigate the effect of the modification of the surface structure on its properties. The results show that the modified structure of Au32 exhibits superior catalytic activity with a faradaic efficiency (for CO) of 97.7% at -0.8 V.
Collapse
Affiliation(s)
- Jiansheng Ye
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Yali Dai
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Wenjun Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jingrou Xu
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Jialing Li
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Meng Chen
- Jingdezhen University, Jingdezhen, Jiangxi 333000, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Yuanxin Du
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
2
|
Zheng P, Wang S, Zhao H, Li Q, Yang S, Chai J, Zhu M. Observation of a Novel Interligand Chiral Arrangement in Metal Nanoclusters and Its Implication in Resisting Racemization. SMALL METHODS 2025; 9:e2401215. [PMID: 39246192 DOI: 10.1002/smtd.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/10/2024]
Abstract
Given the scientifically significant importance of studying the chirality of clusters, the challenges of synthesizing chiral clusters are progressively surmounted. However, the racemization of clusters is unavoidable, and it limits the development of their follow-on chiral applications. To address this issue, chiral thiols are synthesized and used for the construction of high-stability optically pure nanoclusters in this work. As a result, a pair of chiral nanoclusters, Au24Cd2(SR)14, is obtained with excellent stability under thermal, acidic, alkaline, oxidizing, and reducing environments. Unexpectedly, it can also maintain its optical activity with the introduction of Cu2+ ions and chiral ligand with opposite configuration. Structural relationship analysis indicates that the excellent stability is mainly dependent on the hierarchical assembly of the nanoclusters, in which the chiral assembly of chiral ligands (a new pattern of chiral arrangement of intramolecular ligands on the surface of clusters) may be a key factor.
Collapse
Affiliation(s)
- Peisen Zheng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Shuang Wang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Huan Zhao
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Qinzhen Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Sha Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Jinsong Chai
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
3
|
Li J, Wang Z, Ye J, Li Q, Yang S, Chai J, Zhu M. Diphosphine-induced morphological modification in Au nanoclusters and its implications for catalytic activity regulation. Chem Commun (Camb) 2025; 61:5146-5149. [PMID: 40066848 DOI: 10.1039/d5cc00438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Diphosphine-induced structural transformation was performed to modify the local structure of Au44, leading to the formation of an Au40 nanocluster. The regular box-like morphology of Au44 is converted into a sharp shape for Au40. This change in morphology results in the activity enhancement of Au40 in the photocatalytic degradation of rhodamine B.
Collapse
Affiliation(s)
- Jialing Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Zhewei Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Jiansheng Ye
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
4
|
Alam N, Das AK, Chandrashekar P, Baidya P, Mandal S. Recent progress in atomically precise silver nanocluster-assembled materials. NANOSCALE 2024; 16:10087-10107. [PMID: 38713237 DOI: 10.1039/d4nr01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the dynamic landscape of nanotechnology, atomically precise silver nanoclusters (Ag NCs) have emerged as a novel and promising category of materials with their fascinating properties and enormous potential. However, recent research endeavors have surged towards stabilizing Ag-based NCs, leading to innovative strategies like connecting cluster nodes with organic linkers to construct hierarchical structures, thus forming Ag-based cluster-assembled materials (CAMs). This approach not only enhances structural stability, but also unveils unprecedented opportunities for CAMs, overcoming the limitations of individual Ag NCs. In this context, this review delves into the captivating realm of atomically precise nitrogen-based ligand bonded Ag(I)-based CAMs, providing insights into synthetic strategies, structure-property relationships, and diverse applications. We navigate the challenges and advancements in integrating Ag(I) cluster nodes, bound by argentophilic interactions, into highly connected periodic frameworks with different dimensionalities using nitrogen-based linkers. Despite the inherent diversity among cluster nodes, Ag(I) CAMs demonstrate promising potential in sensing, catalysis, bio-imaging, and device fabrication, which all are discussed in this review. Therefore, gaining insight into the silver nanocluster assembly process will offer valuable information, which can enlighten the readers on the design and advancement of Ag(I) CAMs for state-of-the-art applications.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyadarshini Baidya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| |
Collapse
|
5
|
Zhou H, Duan T, Lin Z, Yang T, Deng H, Jin S, Pei Y, Zhu M. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu 41 (SC 6 H 3 F 2 ) 15 Cl 3 (P(PhF) 3 ) 6 (H) 25 ] 2- Constructed from Twisted Cu 13 Units. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307085. [PMID: 38064120 PMCID: PMC10870033 DOI: 10.1002/advs.202307085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.
Collapse
Affiliation(s)
- Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tengfei Duan
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tao Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Yong Pei
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| |
Collapse
|
6
|
Liu D, Gao G, Zhang Y, Li Q, Yang S, Chai J, Yu H, Zhu M. [Au 14(2-SAdm) 9(Dppe) 2] +: a gold nanocluster with a crystallization-induced emission enhancement phenomenon. Chem Commun (Camb) 2024; 60:1337-1340. [PMID: 38197463 DOI: 10.1039/d3cc06335f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
In this work, a gold nanocluster [Au14(2-SAdm)9(Dppe)2]+ was synthesized and structurally determined by X-ray crystallography. The crystals of this cluster exhibit a 50-fold enhancement in quantum yield (5.05% for crystals) compared with its solution. Crystallographic analysis reveals that the weak intermolecular interactions (C-H⋯π, π⋯π) can inhibit the molecular vibration and thus generate the crystallization-induced emission enhancement phenomenon.
Collapse
Affiliation(s)
- Dong Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Guiqi Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Yongyu Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| |
Collapse
|
7
|
Liu C, Li Y, He Z, Yang Y, Wu C, Fan W, Xu WW, Li MB. Reduction-Oxidation Cascade Strategy for Reforming a Au 13-Kerneled Gold Thiolate Nanocluster. J Phys Chem Lett 2023; 14:11558-11564. [PMID: 38096134 DOI: 10.1021/acs.jpclett.3c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Gold nanoclusters protected by thiolate ligands are ideal models for investigating the structure-property correlation of nanomaterals. Introducing relatively weak coordinating ligands into gold thiolate nanoclusters and thus reforming their structures is beneficial for further releasing their activities. However, controlling the selectivity of the process is a challenging task. In this work, we report a cascade strategy for deeply and purposefully reforming the structures of gold thiolate nanoclusters, exemplified by a Au13-kerneled Au23 nanocluster. Specifically, weakly coordinated triphenylphosphine was utilized to reduce (activate) the surface of Au23, enabling its further structural reformation by the following oxidation step. A structurally distinctive Au20 nanocluster was obtained based on this reduction-oxidation cascade strategy. Mechanism studies reveal that both the reduction and oxidation steps and their working sequence are critical for the transformation. Theoretical and experimental results all indicate that the deep structural reformation results in the evolution of the electronic and photoluminescent properties of the gold thiolate nanocluster.
Collapse
Affiliation(s)
- Chang Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Zongbing He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P.R. China
| | - Chao Wu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
8
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
9
|
Shi Y, Lv Y, Wang C, Yu H. Activity of Different Au nS n+1 Staples in the Ligand Exchange of Au 23(SR) 16- with a Single Foreign Thiolate Ligand. J Phys Chem A 2023; 127:9022-9029. [PMID: 37874272 DOI: 10.1021/acs.jpca.3c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ligand exchange has been widely used to synthesize novel thiolated gold nanoclusters and to regulate their specific properties. Herein, density functional theory (DFT) calculations were conducted to investigate the kinetic profiles of the ligand exchange of the [Au23(SCy)16]- nanocluster with an aromatic thiolate (2-napthalenethiol). The three types of staple motifs (i.e., trimetallic Au3S4, monometallic AuS2, and the bridging thiolates) of the Au23 cluster precursor could be categorized into eight groups of S sites with different chemical environments. The ligand exchange of all of them occurs favorably via the SN1-like pathway, with one site starting with the Au-S dissociation and seven other sites starting with the H-transfer steps. By contrast, the SN2-like pathway (i.e., the synergistic SCy-to-SAr exchange prior to the H-transfer step) is unlikely in the target systems. Meanwhile, the Au-S bond on the capping Au atom of the bicapped icosahedral Au15 core is the most active one, while the S sites on Au3S4 (except for the one remote from the metallic core) are all competitive exchanging sites. The ligand exchange activity of the bridging thiolate and the remote S site on Au3S4 is significantly less reactive. The calculation results correlate with the multiple ligand exchange within only a few minutes and the preferential etching of the AuS2 staple with the foreign ligands reported in earlier experiments. The relative activity of different staples might be helpful in elucidating the inherent principles in the ligand exchange-induced size-evolution of metal nanoclusters.
Collapse
Affiliation(s)
- Yanan Shi
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
10
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
11
|
Liao JH, Chiu TH, Liang H, Kahlal S, Saillard JY, Liu CW. Galvanic replacement-induced introduction of a heteroligand into bimetallic and trimetallic nanoclusters. NANOSCALE 2023; 15:6121-6125. [PMID: 36919780 DOI: 10.1039/d3nr00509g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heteroleptic 8-electron silver-rich alloy nanoclusters, [Au@Au4Ag12(dtp)7(PPh3)4]2+ (1) and [Pt@Au4Ag11(dtp)7(PPh3)4] (2), were successfully synthesized via a galvanic replacement reaction of 1,1-dithiolate-protected M@Ag20 (M = Au and Pt) nanoclusters with Au(I)-phosphine salts, leading to the alteration of the cluster nuclearity and geometry of shell skeletons but retaining the same 8-electron count.
Collapse
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|