1
|
Gorgolis G, Tunioli F, Paterakis G, Melucci M, Koutroumanis N, Sygellou L, S Bafqi MS, Saner Okan B, Galiotis C. Enhanced removal of emerging contaminants from tap water by developing graphene oxide and nanoplatelet hybrid aerogels. RSC Adv 2024; 14:34504-34514. [PMID: 39479493 PMCID: PMC11519773 DOI: 10.1039/d4ra05658b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
The removal of emerging contaminants (ECs) from drinking water is a current challenge of global concern. Graphene-based sorbents are attracting increasing interest in this field owing to the chemical versatility of graphene-based materials, their commercial availability and processability in various 3D structures. Herein, for the first time, graphene aerogels (GAs) are reported based on the synergy of graphene oxide (GO) and graphene nanoplatelets (GNPs) derived from waste tire and their use as a sorbent for a mixture of ECs in tap water. Reduction of GO up to 52.1% (O/C = 0.092) was demonstrated through X-ray photoelectron spectroscopy, whereas no changes in the GNP structure during aerogel synthesis were demonstrated with comprehensive spectroscopic and microscopic characterisation. Adsorption of a selection of ECs in a mixture from tap water was tested under flow conditions by inserting the aerogels into filtration cartridges and filtering tap water spiked with the mixture of ECs. Remarkably, the GO + GNP aerogel showed an increase in adsorption capacity of about 2.3 times that of the rGO aerogel owing to the higher obtained surface area, 27 instead of 16 m2 g-1, and the resultant more-reduced structure.
Collapse
Affiliation(s)
- G Gorgolis
- Faculty of Chemical Engineering - University of Patras Panepistimioupoli 26504 Rio Achaia Greece
- Foundation of Research and Technology - Institute of Chemical Engineering Sciences Stadiou Str. Platani - 26504 Greece
| | - F Tunioli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR) Via P. Gobetti 101 I-40129 Bologna Italy
| | - G Paterakis
- Faculty of Chemical Engineering - University of Patras Panepistimioupoli 26504 Rio Achaia Greece
- Foundation of Research and Technology - Institute of Chemical Engineering Sciences Stadiou Str. Platani - 26504 Greece
| | - M Melucci
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR) Via P. Gobetti 101 I-40129 Bologna Italy
| | - N Koutroumanis
- Foundation of Research and Technology - Institute of Chemical Engineering Sciences Stadiou Str. Platani - 26504 Greece
| | - L Sygellou
- Foundation of Research and Technology - Institute of Chemical Engineering Sciences Stadiou Str. Platani - 26504 Greece
| | - M S S Bafqi
- Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence Teknopark Istanbul, Pendik 34906 Istanbul Turkiye
| | - B Saner Okan
- Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence Teknopark Istanbul, Pendik 34906 Istanbul Turkiye
- Faculty of Engineering and Natural Sciences, Materials Science and Nanoengineering, Sabanci University Tuzla 34956 Istanbul Turkiye
| | - C Galiotis
- Faculty of Chemical Engineering - University of Patras Panepistimioupoli 26504 Rio Achaia Greece
- Foundation of Research and Technology - Institute of Chemical Engineering Sciences Stadiou Str. Platani - 26504 Greece
| |
Collapse
|
2
|
Wu J, Trubyanov M, Prvački D, Lim K, Andreeva DV, Novoselov KS. Art and Science of Reinforcing Ceramics with Graphene via Ultrasonication Mixing. ACS OMEGA 2024; 9:42944-42949. [PMID: 39464443 PMCID: PMC11500364 DOI: 10.1021/acsomega.4c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024]
Abstract
This work presents an interdisciplinary approach combining materials science, ultrasonication, artistic expression, and curatorial practice to develop and investigate novel composites. The focus of the approach is incorporating graphene oxide (GO) into kaolin and exploring its effects on material properties. The composites were prepared with varying GO concentrations and sonication times, and their mechanical, thermal, and morphological characteristics were evaluated. The results reveal that the addition of 0.5 wt % GO, combined with a sonication time of 10 min, leads to the highest storage modulus and improved thermal stability. Ultrasonication proved to be an effective method for dispersing and distributing GO particles within the kaolin matrix, resulting in an enhanced material performance. Furthermore, the application of novel composites provided by Prvački adds a unique dimension to the study. Through the artistic interpretation, the tactile qualities and aesthetic potential of the composites are explored, shedding light on the transformative power of materials and cultural significance organized as part of an artist-in-residence commission, introduced in conjunction with the NUS Public Art Initiative. This interdisciplinary collaboration accompanied by an exhibition at the NUS Museum demonstrates the value of merging scientific research, technological advancements, and artistic exploration.
Collapse
Affiliation(s)
- Jiqiang Wu
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
| | - Maxim Trubyanov
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| | - Delia Prvački
- Deliarts
Pte Ltd., Hiangkie Building, 757718, Singapore
| | - Karen Lim
- NUS
Museum & Secretariat, Public Art Committee, National University of Singapore, 119279, Singapore
| | - Daria V. Andreeva
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| | - Kostya S. Novoselov
- Department
of Materials Science and Engineering, National
University of Singapore, 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544, Singapore
| |
Collapse
|
3
|
Gorgolis G, Kotsidi M, Messina E, Mazzurco Miritana V, Di Carlo G, Nhuch EL, Martins Leal Schrekker C, Cuty JA, Schrekker HS, Paterakis G, Androulidakis C, Koutroumanis N, Galiotis C. Antifungal Hybrid Graphene-Transition-Metal Dichalcogenides Aerogels with an Ionic Liquid Additive as Innovative Absorbers for Preventive Conservation of Cultural Heritage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3174. [PMID: 38998257 PMCID: PMC11242601 DOI: 10.3390/ma17133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The use and integration of novel materials are increasingly becoming vital tools in the field of preventive conservation of cultural heritage. Chemical factors, such as volatile organic compounds (VOCs), but also environmental factors such as high relative humidity, can lead to degradation, oxidation, yellowing, and fading of the works of art. To prevent these phenomena, highly porous materials have been developed for the absorption of VOCs and for controlling the relative humidity. In this work, graphene and transition-metal dichalcogenides (TMDs) were combined to create three-dimensional aerogels that absorb certain harmful substances. More specifically, the addition of the TMDs molybdenum disulfide and tungsten disulfide in such macrostructures led to the selective absorption of ammonia. Moreover, the addition of the ionic liquid 1-hexadecyl-3-methylimidazolium chloride promoted higher rates of VOCs absorption and anti-fungal activity against the fungus Aspergillus niger. These two-dimensional materials outperform benchmark porous absorbers in the absorption of all the examined VOCs, such as ammonia, formic acid, acetic acid, formaldehyde, and acetaldehyde. Consequently, they can be used by museums, galleries, or even storage places for the perpetual protection of works of art.
Collapse
Affiliation(s)
- George Gorgolis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Maria Kotsidi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Elena Messina
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), SP35d, 9, 00010 Montelibretti, Italy;
| | - Valentina Mazzurco Miritana
- Department of Energy Technologies and Renewable Sources, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Gabriella Di Carlo
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), SP35d, 9, 00010 Montelibretti, Italy;
| | - Elsa Lesaria Nhuch
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Clarissa Martins Leal Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Jeniffer Alves Cuty
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91.501-970, RS, Brazil
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
| | - Charalampos Androulidakis
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Nikos Koutroumanis
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), Stadiou Street, Platani, 26504 Patras, Greece
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Gorgolis G, Kotsidi M, Paterakis G, Koutroumanis N, Tsakonas C, Galiotis C. Graphene aerogels as efficient adsorbers of water pollutants and their effect of drying methods. Sci Rep 2024; 14:8029. [PMID: 38580774 PMCID: PMC10997784 DOI: 10.1038/s41598-024-58651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Environmental accidents highlight the need for the development of efficient materials that can be employed to eliminate pollutants including crude oil and its derivatives, as well as toxic organic solvents. In recent years, a wide variety of advanced materials has been investigated to assist in the purification process of environmentally compromised regions, with the principal contestants being graphene-based structures. This study describes the synthesis of graphene aerogels with two methods and determines their efficiency as adsorbents of several water pollutants. The main difference between the two synthesis routes is the use of freeze-drying in the first case, and ambient pressure drying in the latter. Raman spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements are employed here for the characterisation of the samples. The as-prepared aerogels have been found to act as photocatalysts of aqueous dye solutions like methylene blue and Orange G, while they were also evaluated as adsorbents of organic solvents (acetone, ethanol and methanol), and, oils like pump oil, castor oil, silicone oil, as well. The results presented here show that the freeze-drying approach provides materials with better adsorption efficiency for the most of the examined pollutants, however, the energy and cost-saving advantages of ambient-pressure-drying could offset the adsorption advantages of the former case.
Collapse
Affiliation(s)
- G Gorgolis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| | - M Kotsidi
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
| | - G Paterakis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - N Koutroumanis
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Tsakonas
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece
| | - C Galiotis
- Department of Chemical Engineering, University of Patras, 26504, Patras, Greece.
- Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Institute of Chemical Engineering Sciences, 26504, Patras, Greece.
| |
Collapse
|
5
|
Misra SK, Ye M, Moitra P, Dighe K, Sharma A, Daza EA, Schwartz-Duval AS, Ostadhossein F, Pan D. Synthesis of an enediyne carbon-allotrope surface for photo-thermal degradation of DNA. Chem Commun (Camb) 2023; 59:13434-13437. [PMID: 37847141 DOI: 10.1039/d3cc03353h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The improper disposal of hospital waste products containing genetic materials poses a serious safety threat. We present herein an environmentally friendly technology using a graphene-based novel carbon-allotropic surface to remediate such wastes. The used carbon-allotrope is decorated with an enediyne (EDE-1) enriched aromatic pi-conjugated structure to create an efficient and active surface for cleaving DNA strands. Under controlled exposure of ultraviolet (UV) radiation and heat, the developed surface influences genetic degradation without disturbing the bacterial populations present downstream of the water treatment system. The designed material has been extensively characterized using physicochemical and biological tools. Our results indicate that this approach can possibly be introduced in large scale hospital waste disposal streams for remediating genetic hazards and thereby developing a portable self-contained system.
Collapse
Affiliation(s)
- Santosh K Misra
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Mao Ye
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ketan Dighe
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinav Sharma
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Enrique A Daza
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Aaron S Schwartz-Duval
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Fatemeh Ostadhossein
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, PA 16802, USA
| |
Collapse
|