1
|
Zhang S, Xia C, Wang J, Chen S, Wang Y, Zhang S, Geng Z, Tang K, Erdem A, Zhu B. Ready-to-Use OECT Biosensor toward Rapid and Real-Time Protein Detection in Complex Biological Environments. ACS Sens 2025; 10:3369-3380. [PMID: 40289497 DOI: 10.1021/acssensors.4c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Organic electrochemical transistor (OECT) sensors are a promising approach for point-of-care testing (POCT) thanks to their high sensitivity and ability to operate in an aqueous environment. However, OECTs suffer from biological fouling at the gate and channel interfaces when exposed to complex biological samples. These nonspecific interactions can often obscure the weak signal from the trace biomarker, compromising the accuracy and sensitivity of measurements and even leading to false detection outcomes. In this study, we developed an intrinsically antifouling OECT by modifying both the gate and channel with phosphorylcholine-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-PC). This modification notably enhances the OECT performance by leveraging the material's inherent mixed electron-ion conductivity, which increases transconductance and decreases gate voltage. Additionally, the zwitterionic nature of the device enables its ultrasensitive detection of C-reactive protein (CRP) with a limit of detection of 0.11 pg/mL, mediated by calcium ions. This exceptional sensitivity arises from the device's enhanced transconductance and ability to sense through the gate and channel interfaces simultaneously. Furthermore, the zwitterionic OECT sensor has demonstrated the fastest sample-to-result time for protein detection (≤60 s), making it highly suitable for real-time CRP monitoring. Importantly, it provides precise real-time detection of CRP without interference from nonspecific proteins such as bovine serum albumin, fibrinogen, lysozyme, and fetal bovine serum. We envision this intrinsically antifouling OECT device offering a robust biosensing platform for the rapid and convenient detection of biomarkers in complex biological environments, providing a reliable and efficient solution for POCT diagnostics.
Collapse
Affiliation(s)
- Shouyan Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Chunyang Xia
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Jun Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shixiong Chen
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - YiXuan Wang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Ke Tang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Arzum Erdem
- Department of Analytical Chemistry, Ege UniversityFaculty of Pharmacy, Bornova Izmir35100, Turkey
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Baoshan, Shanghai 200444, China
- Shanghai Engineering Research Center of Organ Repair, 99 Shangda Road, Baoshan, Shanghai 200444, China
| |
Collapse
|
2
|
Yang X, Chen X, Gu P, Hu Z, Zhang X, Sun Z, Lu L, Zu G, Huang J. Stretchable semiconducting polymer aerogel transistors for high-performance biosensors and artificial synapses. Biomaterials 2025; 322:123416. [PMID: 40383088 DOI: 10.1016/j.biomaterials.2025.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/24/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Stretchable organic electrochemical transistors (OECTs) are attractive for high-performance flexible electronics. Poly(3-hexylthiophene) (P3HT) and poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT) are commonly used for OECTs because of their excellent semiconducting properties. However, it is challenging to achieve stretchable and high-performance OECTs based on hydrophobic P3HT and DPPDTT because of their limited ion penetration. Here, unprecedented stretchable high-performance OECTs based on P3HT and DPPDTT aerogels with crimpled porous structures are developed. They are achieved by a pre-stretching strategy combined with sol-gel and template methods. The porous structures of the aerogels with high porosities facilitate ion penetration and transport, leading to the enhanced transconductance of the aerogel-based OECTs compared with those of the dense counterparts. The crimpled porous structures endow the aerogels and OECTs with good stretchability and stretching stability. The stretchable OECT-based biosensors can detect trace amounts of ascorbic acid in complex samples such as sweat, saliva, serum, and fruit juice in real time. Besides, the OECTs can be applied as stretchable artificial synapses for neuromorphic simulation. This work provides a powerful strategy toward stretchable high-performance transistors and flexible electronics.
Collapse
Affiliation(s)
- Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xu Chen
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| |
Collapse
|
3
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Zhu Z, Pang Y, Li Y, Gu Y, Wang X, Yu A, Liu B, Liu S, Huang W, Zhao Q. The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits. ACS NANO 2025; 19:4084-4120. [PMID: 39829276 DOI: 10.1021/acsnano.4c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes. This review presents the device physics of OECTs in detail, including the evaluation of their various properties and the introduction of different configurations of the aforementioned OECTs. Subsequently, the components of this device and their roles are explained in depth, and the main ways to design and fabricate flexible OECTs are summarized. Following this, we summarize and analyze the principles and applications of OECTs for electrophysiological signal sensing, chemical sensing, biosensing, and sensor arrays. In addition, the concepts of OECT-based digital and neuromorphic circuits and their applications are presented. Finally, the paper summarizes the opportunities and challenges of OECT-based flexible electronics.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Xiaotian Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Aoxi Yu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Baoguang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
5
|
Chen Y, Wang P, Zhang FN, Dai H, Jiao XY, Wang XY, Yu QW, Kang M, Su S, Wang D. Sensors for surveillance of RNA viruses: a One Health perspective. THE LANCET. MICROBE 2024:101029. [PMID: 39681124 DOI: 10.1016/j.lanmic.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
RNA viruses, especially those capable of cross-species transmission, pose a serious threat to human, animal, and environmental health, as exemplified by the 2024 outbreak of the highly pathogenic avian influenza H5N1 virus in cattle, unpasteurised milk, and workers on dairy farms in the USA. This escalating risk of a new RNA virus pandemic highlights the urgent need to implement One Health strategies. However, the centralised virus detection systems currently in use fall short of meeting the required level of virus surveillance and infection diagnosis, particularly in resource-limited regions. In this context, the latest advancements in RNA virus-sensing technologies offer promising solutions. Through interdisciplinary collaboration, these sensors can achieve sensitivity and reliability similar to that of standard laboratory equipment and offer several advantages, such as compact size, affordability, and operational simplicity. In this Review, we highlight the latest advances in sensing technologies for detecting different biomarkers of viral infections (RNA, antigens, and antibodies). We further compare the sensing principles and performances of these technologies and discuss the possibility of deployment of these sensors in the One Health approach and the challenges expected in this pursuit. In conclusion, the widespread use of RNA virus sensors is expected to enhance the effectiveness of surveillance systems for infectious diseases.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
| | - Fen-Ni Zhang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin-Yi Jiao
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xin-Yu Wang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qi-Wen Yu
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China
| | - Mei Kang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Su
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Di Wang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
6
|
Yang C, Sun J, Zhang Y, Tang J, Liu Z, Zhan T, Wang DB, Zhang G, Liu Z, Zhang XE. Construction of AlGaN/GaN high-electron-mobility transistor-based biosensor for ultrasensitive detection of SARS-CoV-2 spike proteins and virions. Biosens Bioelectron 2024; 257:116171. [PMID: 38636317 DOI: 10.1016/j.bios.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/24/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Chenyang Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Jianwen Sun
- School of Integrated Circuits, Tsinghua University, Beijing, 10084, China
| | - Yulong Zhang
- School of Integrated Circuits, Tsinghua University, Beijing, 10084, China
| | - Jingya Tang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zizheng Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Zhan
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Qinghua East Road 35A, Beijing, 10083, China
| | - Dian-Bing Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628, CD Delft, the Netherlands.
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing, 10084, China.
| | - Xian-En Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Faculty of Synthetic Biology, Shenzhen Institute of Advances Technology, Shenzhen, 518055, China; University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
7
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
8
|
Kim H, Won Y, Song HW, Kwon Y, Jun M, Oh JH. Organic Mixed Ionic-Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306191. [PMID: 38148583 PMCID: PMC11251567 DOI: 10.1002/advs.202306191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities. This review provides an overview of OMIECs in various aspects covering mechanisms of charge transport including electronic transport, ionic transport, and ionic-electronic coupling, as well as conducting/semiconducting conjugated polymers and their applications in organic bioelectronics, including (multi)sensors, neuromorphic devices, and electrochromic devices. OMIECs show promise in organic bioelectronics due to their compatibility with biological systems and the ability to modulate electronic conduction and ionic transport, resembling the principles of biological systems. Organic electrochemical transistors (OECTs) based on OMIECs offer significant potential for bioelectronic applications, responding to external stimuli through modulation of ionic transport. An in-depth review of recent research achievements in organic bioelectronic applications using OMIECs, categorized based on physical and chemical stimuli as well as neuromorphic devices and circuit applications, is presented.
Collapse
Affiliation(s)
- Hyunwook Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Hyun Woo Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
9
|
Guo L, Zhao Y, Huang Q, Huang J, Tao Y, Chen J, Li HY, Liu H. Electrochemical protein biosensors for disease marker detection: progress and opportunities. MICROSYSTEMS & NANOENGINEERING 2024; 10:65. [PMID: 38784375 PMCID: PMC11111687 DOI: 10.1038/s41378-024-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.
Collapse
Affiliation(s)
- Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601 China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou, 325000 China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|