1
|
Ma Y, Stellacci F. Structure-Property Relationships of Elastomeric Vinylogous Urethane Thermosets and Their Application as Closed-Loop Recyclable Strain Sensors. Macromolecules 2025; 58:1923-1934. [PMID: 40026452 PMCID: PMC11866918 DOI: 10.1021/acs.macromol.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Developing closed-loop recyclable thermosets and understanding their structure-property relationships are essential steps in advancing a circular materials economy. Here, we present a vinylogous urethane (VU) thermoset with closed-loop recyclability, synthesized through the reaction of polytetrahydrofuran bisacetoacetate (aPTHF) and tris(2-aminoethyl)amine (TREN). These VU polymers exhibit high elasticity, with only a 3-9% residual strain observed after cyclic tensile testing at a maximum strain of 100%, depending on the molecular weight of aPTHF and network cross-link density. The two structural parameters also allow modulation of the mechanical and stress-relaxation properties of VU elastomers. To investigate the hydrolysis of the VU linkages within the hydrophobic aPTHF matrix, we employed a heterogeneous system using a biphasic mixture of HCl and CDCl3. Our findings show that the hydrophobic VUs remain stable in pure water but can be dissociated under acidic conditions, with the dissociation rate accelerated at higher temperatures and/or in the presence of higher HCl concentrations. These detailed investigations indicate the potential of VU elastomers as sustainable substrates for wearable sensors. We therefore conduct a case study of synthesizing a strain sensor through the incorporation of multiwalled carbon nanotubes (MCNs) into the VU elastomer matrix. The sensor can robustly detect various movements. Moreover, acidic treatment of both the neat polymer and the sensor composite using a HCl and diethyl ether solvent mixture allows for the excellent recovery of aPTHF (>90%) and TREN (86%), without discernible damage to the MCNs reclaimed from the latter.
Collapse
Affiliation(s)
- Youwei Ma
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Nguyen LT, Du Prez FE. Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks. MATERIALS HORIZONS 2024; 11:6408-6415. [PMID: 39376135 PMCID: PMC11459227 DOI: 10.1039/d4mh00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Light-based processing of thermosets has gained increasing attention because of its broad application field including its use in digital light processing (DLP) 3D printing. This technique offers efficient design and fabrication of complex structures but typically results in non-recyclable thermoset-based products. To address this issue, we describe here a photocurable, dynamic β-amino ester (BAE) based cross-linker that is not only suitable for DLP printing but can also be chemically degraded via transesterification upon the addition of 2-hydroxyethyl methacrylate (HEMA) as a decross-linker. This conceptually new protocol allows for efficient depolymerization with the direct restoration of curable monomers in a single step without the addition of external catalysts or solvents. By implementing this protocol, we have established a chemical recycling loop for multiple cycles of photo-cross-linking and restoration of cross-linkers, facilitating repeatable DLP 3D printing without generating any waste. The recycled materials exhibit full recovery of thermal properties and Young's modulus while maintaining 75% of their tensile strength for at least three cycles. Simultaneously, the presence of BAE moieties enables the (re)processability of these materials through compression molding.
Collapse
Affiliation(s)
- Loc Tan Nguyen
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Filip E Du Prez
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400356. [PMID: 38842466 PMCID: PMC11587689 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Bhausaheb Dhokale
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Department of ChemistryUniversity of WyomingLaramieWyoming 82071United States of America
| | - Zeinab M. Saeed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry ProgramKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| |
Collapse
|
4
|
Engelen S, Dolinski ND, Chen C, Ghimire E, Lindberg CA, Crolais AE, Nitta N, Winne JM, Rowan SJ, Du Prez FE. Vinylogous Urea-Urethane Vitrimers: Accelerating and Inhibiting Network Dynamics through Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202318412. [PMID: 38198567 DOI: 10.1002/anie.202318412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Vinylogous urethane (VUO ) based polymer networks are widely used as catalyst-free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN ) undergo much faster bond exchange than VUO and are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUO and VUN vitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUO and VUN linkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUO vitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN , these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea - urethane (VU) network of strong non-covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.
Collapse
Affiliation(s)
- Stéphanie Engelen
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Neil D Dolinski
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Chuqiao Chen
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Elina Ghimire
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Charlie A Lindberg
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Alex E Crolais
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Natsumi Nitta
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Stuart J Rowan
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Ma Y, Jiang X, Shi Z, Berrocal JA, Weder C. Closed-Loop Recycling of Vinylogous Urethane Vitrimers. Angew Chem Int Ed Engl 2023; 62:e202306188. [PMID: 37439363 DOI: 10.1002/anie.202306188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Devising energy-efficient strategies for the depolymerization of plastics and the recovery of their structural components in high yield and purity is key to a circular plastics economy. Here, we report a case study in which we demonstrate that vinylogous urethane (VU) vitrimers synthesized from bis-polyethylene glycol acetoacetates (aPEG) and tris(2-aminoethyl)amine can be degraded by water at moderate temperature with almost quantitative recovery (≈98 %) of aPEG. The rate of depolymerization can be controlled by the temperature, amount of water, molecular weight of aPEG, and composition of the starting material. These last two parameters also allow one to tailor the mechanical properties of the final materials, and this was used to access soft, tough, and brittle vitrimers, respectively. The straightforward preparation and depolymerization of the aPEG-based VU vitrimers are interesting elements for the design of polymer materials with enhanced closed-loop recycling characteristics.
Collapse
Affiliation(s)
- Youwei Ma
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
6
|
Wang Z, Tang P, Chen S, Xing Y, Yin C, Feng J, Jiang F. Fully biobased sustainable elastomers derived from chitin, lignin, and plant oil via grafting strategy and Schiff-base chemistry. Carbohydr Polym 2023; 305:120577. [PMID: 36737210 DOI: 10.1016/j.carbpol.2023.120577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
With the dramatically increased environmental problems, the rational design of sustainable polymers from renewable feedstocks opens new avenues to reduce the huge pollution impact. The major challenge for sustainable polymers is the decreased mechanical performance compared to that of petroleum-based materials. In this work, fully biobased sustainable elastomers were developed by integrating renewable chitin, lignin, and plant oil into one macromolecule, in which chitin was chosen as the rigid backbone, while a lignin-derived monomer vanillin acrylate (VA) and a plant oil-based monomer lauryl acrylate (LA) were selected as the hard and soft segments for the grafted side chains. A series of Chitin-graft-poly(vanillin acrylate-co-lauryl acrylate) (Chitin-g-P(VA-co-LA)) copolymers with varied feed ratios and chitin contents were synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization as an effective grafting strategy. In addition, a dynamic cross-linked network was incorporated via Schiff-base reaction to improve the macroscopic behavior of such kind of chitin graft elastomers. These sustainable elastomers are mechanically strong and show excellent reprocessablity, as well as outstanding UV-blocking property. This strategy is versatile and can inspire the further development of fully biobased sustainable materials from natural resources.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuaishuai Chen
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuxian Xing
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chuantao Yin
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
7
|
Dertnig C, Guedes de la Cruz G, Neshchadin D, Schlögl S, Griesser T. Blocked Phosphates as Photolatent Catalysts for Dynamic Photopolymer Networks. Angew Chem Int Ed Engl 2023; 62:e202215525. [PMID: 36421065 DOI: 10.1002/anie.202215525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
While latent catalysts are a well-established strategy for initiating and controlling the rate of polymerization reactions, their use in dynamic polymer networks is still in its infancy. The ideal latent catalyst should be thermally stable and release a highly active species in response to an external trigger. Here, we have synthesized a temperature resistant (>200 °C) organic phosphate with a photolabile o-nitrobenzyl protecting group that can be cleaved by UV light. Introduced in a visible light curable thiol-click photopolymer, the sequence-dependent λ-orthogonality of the curing and cleavage enables an efficient network formation at 451 nm, without premature release of the catalyst. Once cured, irradiation at 372 nm spatiotemporally activates the phosphate, which catalyzes transesterifications at elevated temperature. The formed catalyst has no effect on the thermal stability of the polymeric network and allows the activation of bond exchange reactions in selected domains of printed 3D objects.
Collapse
Affiliation(s)
- Carina Dertnig
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| | - Gema Guedes de la Cruz
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, 8700, Leoben, Austria
| | - Thomas Griesser
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| |
Collapse
|
8
|
Schoustra SK, de Heer Kloots MHP, Posthuma J, van Doorn D, Dijksman JA, Smulders MMJ. Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks. Macromolecules 2022; 55:10341-10355. [DOI: 10.1021/acs.macromol.2c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/14/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Sybren K. Schoustra
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martijn H. P. de Heer Kloots
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Posthuma
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Daphne van Doorn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joshua A. Dijksman
- Department of Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Lee G, Song HY, Choi S, Kim CB, Hyun K, Ahn SK. Harnessing β-Hydroxyl Groups in Poly(β-Amino Esters) toward Robust and Fast Reprocessing Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gyuri Lee
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Subi Choi
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
10
|
Chen F, Gao F, Guo X, Shen L, Lin Y. Tuning the Dynamics of Enamine-One-Based Vitrimers through Substituent Modulation of Secondary Amine Substrates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
11
|
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers (Basel) 2022; 14:4457. [PMID: 36298037 PMCID: PMC9609322 DOI: 10.3390/polym14204457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. This review presents the progress in the understanding of the thia-Michael reaction over the years as well as the latest developments and plausible future directions to prepare CANs based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a specific section with comparison with thia-Michael-based CANs.
Collapse
Affiliation(s)
| | | | - Eric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|