1
|
Dellemme D, Kardas S, Tonneaux C, Lernould J, Fossépré M, Surin M. From Sequence Definition to Structure-Property Relationships in Discrete Synthetic Macromolecules: Insights from Molecular Modeling. Angew Chem Int Ed Engl 2025; 64:e202420179. [PMID: 40106274 DOI: 10.1002/anie.202420179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Inspired by the exquisite properties emerging from the sequence order in nucleic acids and proteins, researchers are increasingly considering synthetic sequence-defined macromolecules (SDMs) to reach precise functions, e.g. for catalysis, data storage, energy, and health. Although researchers develop iterative techniques permitting the synthesis of perfectly defined sequences, there is still an important gap to achieve the desired properties leading to their utilization as materials. This arises from the fact that the effect of the sequence order on the 3D structure is unknown for most current synthetic SDMs. Although the Protein Data Bank gathers hundreds of thousands of elucidated 3D structures of proteins, and many more computed (using, e.g., AlphaFold), extended information on sequence-structure relationships does not exist yet for synthetic SDMs. To tackle this problem for relatively flexible synthetic macromolecules, one can nowadays utilize the existing tools of molecular modeling simulations. In this review, we report an advanced practice to reveal the 3D structures and the interactions, through the combination of all-atom molecular dynamics simulations and network analysis applied to different types of SDMs. By combining the computational results to the experimental ones, we show the potential of this approach for an in-depth understanding of the sequence-structure-property relationships in discrete macromolecular systems, toward guiding their rational design for specific functions.
Collapse
Affiliation(s)
- David Dellemme
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| | - Sinan Kardas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| | - Corentin Tonneaux
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| | - Julien Lernould
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons ‒ UMONS, Place du Parc, 20, Mons, B-7000, Belgium
| |
Collapse
|
2
|
Forysiak W, Lizak A, Szweda R. Sequence of Monomers and Position of Stereocenters Matter for Thermal Properties of Stereocontrolled Oligourethanes. Chemphyschem 2024; 25:e202400366. [PMID: 38753463 DOI: 10.1002/cphc.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Polyurethanes are commodity materials used for multiple applications. In recent years, a new category of polyurethane material has emerged, characterized by the lack of polymer molar mass dispersity, control of the monomer arrangement in the chain, and even full stereocontrol. Various multistep synthesis strategies have been developed to fabricate sequence-defined polyurethanes. However, synthesizing stereocontrolled polyurethanes with a controlled sequence is still a challenge. Polyurethanes with structural precision, as represented by biopolymers, i. e. proteins or nucleic acids, have opened new application directions for these groups of materials. It has been shown that polyurethanes can be used as biomimetics, information carriers, molecular tags, and materials with strictly controlled properties. Precise synthesis of macromolecules allows us to fine-tune the properties of polymers to specific needs. Therefore, it is essential to collect information on the sequence-structure relationship of polymers. In our work, we present synthetic pathways to make sequence and stereo-defined oligourethanes. We demonstrate that structural details, i. e., the monomer sequences and position of the stereocenter, have a tremendous effect on the thermal properties of model oligourethanes. We show that the introduction of chirality by constitutional isomerization can be used to program the thermal characteristics of polymers, which are key features for material applications.
Collapse
Affiliation(s)
- Weronika Forysiak
- Łukasiewicz Research Network -, PORT Polish Centre for Technology Development, ul. Stabłowicka 147, 54-066, Wrocław, Poland
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| | - Agnieszka Lizak
- Łukasiewicz Research Network -, PORT Polish Centre for Technology Development, ul. Stabłowicka 147, 54-066, Wrocław, Poland
| | - Róża Szweda
- Łukasiewicz Research Network -, PORT Polish Centre for Technology Development, ul. Stabłowicka 147, 54-066, Wrocław, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Szatko M, Forysiak W, Kozub S, Andruniów T, Szweda R. Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand. ACS Biomater Sci Eng 2024; 10:3727-3738. [PMID: 38804015 PMCID: PMC11167595 DOI: 10.1021/acsbiomaterials.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.
Collapse
Affiliation(s)
- Maksymilian Szatko
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Weronika Forysiak
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sara Kozub
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
| | - Tadeusz Andruniów
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Roza Szweda
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
4
|
De Franceschi I, Badi N, Du Prez FE. Telechelic sequence-defined oligoamides: their step-economical synthesis, depolymerization and use in polymer networks. Chem Sci 2024; 15:2805-2816. [PMID: 38404375 PMCID: PMC10882489 DOI: 10.1039/d3sc04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
The application of sequence-defined macromolecules in material science remains largely unexplored due to their challenging, low yielding and time-consuming synthesis. This work first describes a step-economical method for synthesizing unnatural sequence-defined oligoamides through fluorenylmethyloxycarbonyl chemistry. The use of a monodisperse soluble support enables homogeneous reactions at elevated temperature (up to 65 °C), leading to rapid coupling times (<10 min) and improved synthesis protocols. Moreover, a one-pot procedure for the two involved iterative steps is demonstrated via an intermediate quenching step, eliminating the need for in-between purification. The protocol is optimized using γ-aminobutyric acid (GABA) as initial amino acid, and the unique ability of the resulting oligomers to depolymerize, with the formation of cyclic γ-butyrolactame, is evidenced. Furthermore, in order to demonstrate the versatility of the present protocol, a library of 17 unnatural amino acid monomers is synthesized, starting from the readily available GABA-derivative 4-amino-2-hydroxybutanoic acid, and then used to create multifunctional tetramers. Notably, the obtained tetramers show higher thermal stability than a similar thiolactone-based sequence-defined macromolecule, which enables its exploration within a material context. To that end, a bidirectional growth approach is proposed as a greener alternative that reduces the number of synthetic steps to obtain telechelic sequence-defined oligoamides. The latter are finally used as macromers for the preparation of polymer networks. We expect this strategy to pave the way for the further exploration of sequence-defined macromolecules in material science.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
5
|
Perez Mellor AF, Brazard J, Kozub S, Bürgi T, Szweda R, Adachi TBM. Unveiling the Configurational Landscape of Carbamate: Paving the Way for Designing Functional Sequence-Defined Polymers. J Phys Chem A 2023; 127:7309-7322. [PMID: 37624607 PMCID: PMC10493977 DOI: 10.1021/acs.jpca.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.
Collapse
Affiliation(s)
- Ariel F. Perez Mellor
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Johanna Brazard
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Sara Kozub
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Thomas Bürgi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Roza Szweda
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Takuji B. M. Adachi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
6
|
Catt SO, Hackner M, Spatz JP, Blasco E. Macromolecular Engineering: From Precise Macromolecular Inks to 3D Printed Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300844. [PMID: 37078908 DOI: 10.1002/smll.202300844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Macromolecules with complex, defined structures exist in nature but rarely is this degree of control afforded in synthetic macromolecules. Sequence-defined approaches provide a solution for precise control of the primary macromolecular structure. Despite a growing interest, very few examples for applications of sequence-defined macromolecules exist. In particular, the use of sequence-defined macromolecules as printable materials remains unexplored. Herein, the rational design of precise macromolecular inks for 3D microprinting is investigated for the first time. Specifically, three printable oligomers are synthesized, consisting of eight units, either crosslinkable (C) or non-functional (B) with varied sequence (BCBCBCBC, alternating; BBCCCBB, triblock; and BBBBCCCC, block). The oligomers are printed using two-photon laser printing and characterized. It is clearly demonstrated that the macromolecular sequence, specifically the positioning of the crosslinkable group, plays a critical role in both the printability and final properties of the printed material. Thus, through precise design and printability of sequence-defined macromolecules, an exciting avenue for the next generation of functional materials for 3D printing is created.
Collapse
Affiliation(s)
- Samantha O Catt
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
| | - Maximillian Hackner
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
- Department of Cellular Biophysics, Germany Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
- Department of Cellular Biophysics, Germany Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Cwynar P, Pasikowski P, Szweda R. One-pot approach for multi-step, iterative synthesis of sequence-defined oligocarbamates. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
De Franceschi I, Mertens C, Badi N, Du Prez F. Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules. Polym Chem 2022. [DOI: 10.1039/d2py00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monodisperse soluble support is used as an effective tool for the large-scale, liquid-phase synthesis of sequence-defined macromolecules. This uniform support allows for direct characterisation and leads to a single peak in mass spectrometry.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Chiel Mertens
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Soete M, Van Hoorde J, Du Prez F. Discrete, self-immolative N-substituted oligourethanes and their use as molecular tags. Polym Chem 2022. [DOI: 10.1039/d2py00630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depolymerization of N-substituted oligourethanes via an intramolecular cyclization event was studied in-depth, while the applicability of these macromolecules as anti-counterfeiting tags was demonstrated by labeling a polyurethane material.
Collapse
Affiliation(s)
- Matthieu Soete
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jens Van Hoorde
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|