1
|
Zou H, Wang S, Han C, Hu M, Chu B, Zhou L. Helical Polymer-Containing Bottlebrush Polymers (BBPs): Design, Synthesis, and Perspectives. Macromol Rapid Commun 2025; 46:e2400985. [PMID: 39911003 DOI: 10.1002/marc.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Helical polymer-containing bottlebrush polymers (BBPs) are a special and fascinating type of polymer. They possess bottlebrush topology and contain helical polymers as main chains (MCs) or side chains (SCs), thereby presenting interesting and fantastic properties, such as chiral amplification, circularly polarized luminescence, photonic crystal, and so on. This review mainly focuses on BBPs containing helical polymers of polypeptides, polyacetylenes (PAs), and polyisocyanides (PIs). Detailed summarizations are severally given to BBPs with helical polypeptides as MCs and SCs. Meanwhile, BBPs comprising helical PAs as MCs are fully discussed. What's more, BBPs consisted of helical PIs as MCs and SCs are described separately. In addition, BBPs with other helical polymers are briefly introduced, too. The authors hope this review will motivate more interest in developing helical polymers with complex topologies and fascinating properties, and encourage further progress in functional chiral materials.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Shiqi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Chaofan Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Menghao Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui Province, 232001, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| |
Collapse
|
2
|
Bandyopadhyay S, Barman S, Paul S, Datta A, Ghosh S. A ferroelectric helical polymer. Chem Commun (Camb) 2025; 61:937-940. [PMID: 39679468 DOI: 10.1039/d4cc05250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This communication introduces helical polyacetylene (P1) with an appended acceptor (A)-donor (D)-acceptor (A) conjugated chromophore as a promising ferroelectric candidate. The helical conformation of P1 leads to a highly stable chiral assembly of the appended ADA chromophores. This results in prominent ferroelectricity as evident from the superior hysteresis loop at room temperature, exhibiting a saturation polarization (PS) value ∼2 μC cm-2 and remanent polarization (Pr) value ∼1.8 μC cm-2 at a low coercive field (Ec) of 5.2 kV cm-1, rarely reported before for purely organic systems.
Collapse
Affiliation(s)
| | | | - Swadesh Paul
- School of Applied and Interdisciplinary Sciences, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, India
- Technical Research Centre Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, India
- Technical Research Centre Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata-700032, India.
| |
Collapse
|
3
|
Okuda S, Ikai T, Okutsu H, Ando M, Hattori M, Ishidate R, Yashima E. Helix-Sense-Selective Memory Polymerization of Biphenylylacetylenes Bearing Carboxy and Amino Groups in Water. Angew Chem Int Ed Engl 2024; 63:e202412752. [PMID: 39043565 DOI: 10.1002/anie.202412752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
We report the helix-sense-selective memory polymerization (HSMP) of achiral biphenylylacetylenes bearing carboxy and amino pendant groups in the presence of basic and acidic chiral guests in water, respectively. The HSMP proceeds in a highly helix-sense-selective manner driven by noncovalent chiral ionic interactions between the monomers and guests under kinetic control, producing the one-handed helical polymers with a static memory of helicity in one-pot during the polymerization in a very short time, accompanied by amplification of asymmetry. The carboxy-bound helicity-memorized polymer self-assembles into a cholesteric liquid crystal in concentrated water, in which a variety of basic achiral fluorophores further co-assembles to form supramolecular helical aggregates that exhibit an induced circularly polarized luminescence in a color tunable manner.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi, Saitama, 332-0012, Japan
| | - Hinako Okutsu
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mitsuka Ando
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masaki Hattori
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ryoma Ishidate
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Present address: Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, R.O.C
| |
Collapse
|
4
|
Zhou Y, Zhang C, Huang J, Liu L, Bai J, Li J, Satoh T, Okamoto Y. Positive Synergy between the Helical Poly(phenylacetylene) Backbones and the Helical L-Proline Oligopeptide Pendants for Enhanced Enantioseparation Properties. Anal Chem 2024; 96:2078-2086. [PMID: 38259249 DOI: 10.1021/acs.analchem.3c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A series of optically active helical poly(phenylacetylene)s (PPA-Pro1, PPA-Pro3, PPA-Pro6, PPA-Pro9, and PPA-Pro12) bearing different chain lengths of L-proline oligopeptide in the side chains were obtained by polymerizing the corresponding novel phenylacetylene monomers. The monomer adopted a trans-rich helix structure when the L-proline oligopeptide chain length was longer, according to the optical activities and 2D-NMR analysis. The helical structure could be maintained and significantly influenced the polymers' helical conformation by introducing the L-proline oligopeptide to the pendants. By the way, the morphology of PPA-Pro3 was observed by atomic force microscope (AFM) on highly oriented pyrolytic graphite (HOPG), and the information on the helix direction, pitch, and chain arrangement was obtained. Also, the chiral separation properties of these polymer-based chiral stationary phases (CSPs) were investigated using high-performance liquid chromatography (HPLC). The poly(phenylacetylene)s showed enhanced enantioseparation properties toward various racemates depending on the longer chain length of the L-proline oligopeptide in the pendants and the positive synergy between the helical backbone and helical side chains. Particularly, PPA-Pro9 showed comparable or even superior enantioseparation properties for racemates 2 and 9 to four commercial columns (Daicel Chiralpak or Chiralcel AD, AS, OD, and OT), indicating that these poly(phenylacetylene)-based CSPs have potential practical values. This work presented here provides inspiration for the further development of CSPs based on a new paradigm.
Collapse
Affiliation(s)
- Yanli Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Research Center for Biomass Materials, Tianfu Yongxing Laboratory, Chengdu 610213, Sichuan P. R. China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, P. R. China
| | - Jiahe Huang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, P. R. China
| | - Jianwei Bai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Junqing Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yoshio Okamoto
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Ikai T, Morita Y, Majima T, Takeda S, Ishidate R, Oki K, Suzuki N, Ohtani H, Aoi H, Maeda K, Okoshi K, Yashima E. Control of One-Handed Helicity in Polyacetylenes: Impact of an Extremely Small Amount of Chiral Substituents. J Am Chem Soc 2023; 145:24862-24876. [PMID: 37930639 PMCID: PMC10825823 DOI: 10.1021/jacs.3c09308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Controlling the one-handed helicity in synthetic polymers is crucial for developing helical polymer-based advanced chiral materials. We now report that an extremely small amount of chiral biphenylylacetylene (BPA) monomers (ca. 0.3-0.5 mol %) allows complete control of the one-handed helicity throughout the polymer chains mostly composed of achiral BPAs. Chiral substituents introduced at the 2-position of the biphenyl units of BPA positioned in the vicinity of the polymer backbones contribute to a significant amplification of the helical bias, as interpreted by theoretical modeling and simulation. The helical structures, such as the helical pitch and absolute helical handedness (right- or left-handed helix) of the one-handed helical copolymers, were unambiguously determined by high-resolution atomic force microscopy combined with X-ray diffraction. The exceptionally strong helix-biasing power of the chiral BPA provides a highly durable and practically useful chiral material for the separation of enantiomers in chromatography by copolymerization of an achiral functional BPA with a small amount of the chiral BPA (0.5 mol %) due to the robust helical scaffold of the one-handed helical copolymer.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Morita
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsuyoshi Majima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shoki Takeda
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryoma Ishidate
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Oki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hajime Ohtani
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hiromi Aoi
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Katsuhiro Maeda
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kanazawa 920-1192, Japan
| | - Kento Okoshi
- Department
of Applied Chemistry and Bioscience, Chitose
Institute of Science and Technology, Chitose, Hokkaido 066-8655, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Yuan S, Zhao L, Wang F, Tan L, Wu D. Recent advances of optically active helical polymers as adsorbents and chiral stationary phases for chiral resolution. J Sep Sci 2023; 46:e2300363. [PMID: 37480172 DOI: 10.1002/jssc.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Rey-Tarrío F, Rodríguez R, Quiñoá E, Freire F. Screw sense excess and reversals of helical polymers in solution. Nat Commun 2023; 14:1742. [PMID: 36990975 DOI: 10.1038/s41467-023-37405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThe helix reversal is a structural motif found in helical polymers in the solid state, but whose existence is elusive in solution. Herein, we have shown how the photochemical electrocyclization (PEC) of poly(phenylacetylene)s (PPAs) can be used to determine not only the presence of helix reversals in polymer solution, but also to estimate the screw sense excess. To perform these studies, we used a library of well folded PPAs and different copolymers series made by enantiomeric comonomers that show chiral conflict effect. The results obtained indicate that the PEC of a PPA will depend on the helical scaffold adopted by the PPA backbone and on its folding degree. Then, from these studies it is possible to determine the screw sense excess of a PPA, highly important in applications such as chiral stationary phases in HPLC or asymmetric synthesis.
Collapse
|
8
|
Yang H, Ma S, Zhao B, Deng J. Brightening up Full-Color and White Circularly Polarized Luminescence through Chiral Induction and Circularly Polarized Light Excitation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13668-13677. [PMID: 36857157 DOI: 10.1021/acsami.3c01145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Preparation of chiral materials from achiral helical polymers has aroused great interest among researchers. In this work, chiral small molecules were utilized to accomplish chiral induction toward racemic helical polyacetylene via intermolecular π-π stacking by which chiral films with strong optical activity were fabricated. Furthermore, introducing fluorescent components generated full-color and white circularly polarized luminescence (CPL). A CPL generation mechanism is proposed accordingly, namely circularly polarized light excitation (CP-Ex). CPL emission and amplification of the luminescence dissymmetry factor were achieved under the synergetic effect of CP-Ex and chirality transfer. The CP-Ex mechanism was further verified by the double-layered film consisting of a chiral layer and a fluorescent layer. More noticeably, for double-layered films, the sense of CPL signals can be switched by changing the direction of excitation light. This work opens up new strategies for exploring tunable multiple- and white-color CPL materials.
Collapse
Affiliation(s)
- Hongfang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Ma
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Zheng W, Oki K, Saha R, Hijikata Y, Yashima E, Ikai T. One-Handed Helical Tubular Ladder Polymers for Chromatographic Enantioseparation. Angew Chem Int Ed Engl 2023; 62:e202218297. [PMID: 36680515 DOI: 10.1002/anie.202218297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Defect-free one-handed contracted helical tubular ladder polymers with a π-electron-rich cylindrical helical cavity were synthesized by alkyne benzannulations of the random-coil precursor polymers containing 6,6'-linked-1,1'-spirobiindane-7,7'-diol-based chiral monomer units. The resulting tightly-twisted helical tubular ladder polymers showed remarkably high enantioseparation abilities toward a variety of chiral hydrophobic aromatics with point, axial, and planar chiralities. The random-coil precursor polymer and analogous rigid-rod extended helical ribbon-like ladder polymer with no internal helical cavity exhibited no resolution abilities. The molecular dynamics simulations suggested that the π-electron-rich cylindrical helical cavity formed in the tightly-twisted tubular helical ladder structures is of key importance for producing the highly-enantioseparation ability, by which chiral aromatics can be enantioselectively encapsulated by specific π-π and/or hydrophobic interactions.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kosuke Oki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ranajit Saha
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
10
|
Fukuda M, Morikawa M, Hirose D, Taniguchi T, Nishimura T, Yashima E, Maeda K. Ultra-fast One-Handed Helix Induction and Its Static Helicity Memory in a Poly(biphenylylacetylene) with a Catalytic Amount of Chiral Ammonium Salts. Angew Chem Int Ed Engl 2023; 62:e202217020. [PMID: 36718497 DOI: 10.1002/anie.202217020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
We report an ultra-fast helix induction and subsequent static helicity memory in poly(biphenylylacetylene) (PBPA-A) assisted by a catalytic amount of nonracemic ammonium salts comprised of non-coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF- ) as a counter anion. The remarkable acceleration of the helix-induction rate in PBPA-A accompanied by the significant amplification of the asymmetry relies on the two methoxymethoxy groups of the biphenyl pendants, which can gain access to enfold the chiral ammoniums in a crown-ether manner in specific aromatic solvents, leading to ultra-fast helicity induction, which is completed within 30 s. In aromatic solvents, helicity memory is lost rapidly, but is quite stable in long-chain hydrocarbons. The best use of specific solvents for helicity induction and static helicity memory, respectively, provides a highly sensitive chirality sensing system toward a small amount of chiral amines and amino acids when complexed with BArF- .
Collapse
Affiliation(s)
- Mayu Fukuda
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mai Morikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Hirose
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
11
|
Ikai T, Anzai S, Oki K, Yashima E. Amplification of macromolecular helicity of poly(biphenylylacetylene)s composed of a small amount of chiral [5]helicene units. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering Nagoya University Nagoya Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama Japan
| | - Shun Anzai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering Nagoya University Nagoya Japan
| | - Kosuke Oki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering Nagoya University Nagoya Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering Nagoya University Nagoya Japan
| |
Collapse
|
12
|
Ikai T, Okuda S, Aizawa M, Yashima E. Chiral and Achiral Pendant-Bound Poly(biphenylylacetylene)s Bearing Amide and/or Carbamate Groups: One-Handed Helix Formations and Chiral Recognition Abilities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shogo Okuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Motoki Aizawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|