1
|
Petti A, Karrasch MJ, Chahar P, Wessels FH, Hölter N, Boser F, Daniliuc CG, Glorius F. Cyclic Bifunctional Reagents Enabling a Strain-Release-Driven Formal [3 + 2] Cycloaddition of 2 H-Azirines by Cascade Energy Transfer. J Am Chem Soc 2025; 147:13276-13285. [PMID: 40210204 PMCID: PMC12022991 DOI: 10.1021/jacs.4c18080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
The energy transfer (EnT)-catalyzed ring opening and further decarboxylation of isoxazole-5(4H)-ones enables the in situ generation of strained 2H-azirines. Subsequent selective C(sp2)-C(sp3) bond cleavage of the azirine intermediate allows a formal [3 + 2] cycloaddition with a wide range of electrophiles, unlocking access to valuable pyrroline-type moieties. Mechanistic experiments in combination with density functional theory (DFT) calculations revealed the unique nature of the EnT-cascade process for the generation and ring opening of the three-membered aza-cycle while providing insight into the regio- and diastereoselectivity of the annulation. This mild and straightforward method ensures the rapid construction of highly substituted cyclic imines, which can be easily converted into pyrrolidines, fused oxaziridines, and biologically relevant β-amino acid precursors.
Collapse
Affiliation(s)
| | | | | | - Felix H. Wessels
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, Münster 48149, Germany
| | - Niklas Hölter
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, Münster 48149, Germany
| | - Florian Boser
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, Münster 48149, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
2
|
Sun Z, Yu W, Li X, Xu X, Du X. Energy transfer-mediated carbonylimination of alkenes using a bifunctional reagent. Org Biomol Chem 2025; 23:3093-3096. [PMID: 40017461 DOI: 10.1039/d5ob00123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A photoinduced EnT-mediated generation of acyl radicals has been accomplished using rationally designed acyl oxime ether reagents under metal-free conditions. This approach offers a mild and practical method for the synthesis of valuable β-aminoketones.
Collapse
Affiliation(s)
- Zetian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Weishu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaohua Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
3
|
Li WD, Wei NN, Feng N, Zheng TY, Hao WW, Guo G, Niu X, Kong C, Shuai C, Wen H, Li Y, Chang K, Li ZJ. Synthesis of α-Chloroboronic Esters via Photoredox-Catalyzed Chloro-Alkoxycarbonylation of Vinyl Boronic Esters. Org Lett 2025; 27:2670-2676. [PMID: 40059319 DOI: 10.1021/acs.orglett.5c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
α-Chloroboronic esters are a class of stable multifunctional molecules that show unique applications in pharmaceutical science and organic chemistry. Despite their apparent utility, the synthetic methods of these compounds remain limited. Herein, a novel strategy for the efficient synthesis of α-chloroboronic esters is developed via photoredox-catalyzed chloro-alkoxycarbonylation of vinyl boronic esters. This strategy features the advantages of high atom economy, environmental friendliness, and excellent functional group compatibility and was verified by the cross-coupling of a variety of free alcohols, oxalyl chlorides, and vinyl boronic esters. Control experiments and mechanistic studies indicate that the alkoxycarbonyl radical and α-boryl carbocation are key intermediates in this transformation.
Collapse
Affiliation(s)
- Wen-Duo Li
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Na-Na Wei
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong, Qingyang, Gansu 745000, China
| | - Nan Feng
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
| | - Tian-Ye Zheng
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
| | - Wen-Wen Hao
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
| | - Guozhe Guo
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Xiaoqin Niu
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Chao Kong
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Chao Shuai
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Hui Wen
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Yingying Li
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Kejian Chang
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| | - Zhi-Jun Li
- College of Petroleum and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, China
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, Qingyang, Gansu 745000, China
| |
Collapse
|
4
|
Qiu H, Matsumoto A, Maruoka K. Sequential Photocatalysis for Homologative Diversification of α-Amino Acids to β-Amino Acids Via Phosphonium Ylide Linchpin Strategy. J Am Chem Soc 2024; 146:35478-35485. [PMID: 39665783 DOI: 10.1021/jacs.4c14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
β-Amino acids serve as crucial building blocks for a broad range of biologically active molecules and peptides with potential as peptidomimetics. While numerous methods have been developed for the synthesis of β-amino acids, most of them require multistep preparation of specific reagents and substrates, which limits their synthetic practicality. In this regard, a homologative transformation of abundant and readily available α-amino acids would be an attractive approach for β-amino acid synthesis. Herein, we disclose the development of a sequential process to provide diverse β-amino acids from α-amino acid derivatives and commercially available phosphonium ylides via visible light photoredox catalysis. In this two-step protocol, phosphonium ylides function as a bifunctional linchpin: they act as a carbon nucleophile to forge a C-C bond in the first step and as a carbon-centered radical source for diverse modifications of the β-amino acid scaffold in the second step. The orthogonal activation of these reactivities under mild photocatalytic conditions enables a modular three-component assembly to access β-amino acids and dipeptides with high structural diversity.
Collapse
Affiliation(s)
- Hui Qiu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Ying CJ, Shao Y, Wan YC, Zheng M, Hua LL, Zhan LW, Li BD, Hou J. Photocatalytic synthesis of β-amino acid derivatives from alkenes with alkyl formates. Chem Commun (Camb) 2024; 60:13071-13074. [PMID: 39436698 DOI: 10.1039/d4cc04131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The aminocarbonylation of alkenes is an efficient approach to synthesize important β-amino acid motifs. However, simple and convenient methods are still rare. Herein, we present a novel visible-light-mediated controllable three-component radical relay coupling of alkenes, alkyl formates and oxime esters. By the combination of hydrogen atom transfer and energy transfer processes, a series of β-amino esters could be obtained smoothly in one step under mild conditions. We expect that the approach can complement current methodologies for the synthesis of β-amino esters.
Collapse
Affiliation(s)
- Cheng-Jie Ying
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ming Zheng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Li-Li Hua
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Tu JL, Huang B. Direct C(sp 3)-H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents. Chem Commun (Camb) 2024; 60:11450-11465. [PMID: 39268687 DOI: 10.1039/d4cc03383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)-H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)-H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
7
|
Chen Z, Yang S, Wu L, Li S, Yang L. Photocatalyzed Imino-Difluoromethylation of Alkenes with Bifunctional Oxime Esters. J Org Chem 2024; 89:13585-13594. [PMID: 39256949 DOI: 10.1021/acs.joc.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Herein, we report a simple and versatile difluoromethylene-imide reaction in which a series of olefins can undergo a difluoromethylenimine reaction under photocatalytic conditions through an energy transfer (EnT) process. The reaction has mild conditions and a wide range of applicability. We successfully synthesized 27 molecules containing difluoromethylene units, featuring easily accessible starting materials and operational simplicity.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuhang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liping Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuo Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Luyao Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Zhou P, Zhang Y, Ma X, Yang X, Fang X, Lu X, Shu C. Energy-Transfer Enabled Divergent Synthesis of Polycyclic γ-Sultines. Chemistry 2024; 30:e202401369. [PMID: 39003675 DOI: 10.1002/chem.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
A visible-light-initiated energy-transfer enabled radical cyclization for the divergent synthesis of polycyclic γ-sultine derivatives has been developed. The reaction provides an alternative and expeditious access to benzofused γ-sultine frameworks, the analogues of γ-lactones and γ-sultones, and features good functional group compatibility, mild reaction conditions and excellent diastereoselectivity. The robustness and application potential of this method have also been successfully displayed by two gram-scale reactions and the synthesis of polycyclic sultones. Mechanistic studies indicated the transformations through a possible energy-transfer enabled intramolecular radical homolytic substitution or hydrogen atom transfer process mainly.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yongxin Zhang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xinyue Ma
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xiaoxiao Yang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xing Fang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xi Lu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Chao Shu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| |
Collapse
|
9
|
Laskar R, Dutta S, Spies JC, Mukherjee P, Rentería-Gómez Á, Thielemann RE, Daniliuc CG, Gutierrez O, Glorius F. γ-Amino Alcohols via Energy Transfer Enabled Brook Rearrangement. J Am Chem Soc 2024; 146:10899-10907. [PMID: 38569596 PMCID: PMC11027157 DOI: 10.1021/jacs.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.
Collapse
Affiliation(s)
- Ranjini Laskar
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jan C. Spies
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Poulami Mukherjee
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Ángel Rentería-Gómez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Rebecca E. Thielemann
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
10
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
11
|
Paulus F, Stein C, Heusel C, Stoffels TJ, Daniliuc CG, Glorius F. Three-Component Photochemical 1,2,5-Trifunctionalizations of Alkenes toward Densely Functionalized Lynchpins. J Am Chem Soc 2023; 145:23814-23823. [PMID: 37852246 DOI: 10.1021/jacs.3c08898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.
Collapse
Affiliation(s)
- Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Corinna Heusel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias J Stoffels
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
12
|
Gao J, He XC, Liu YL, Ye ZP, Guan JP, Chen K, Xiang HY, Yang H. Photoredox/Nickel Dual Catalysis-Enabled Cross-Dehydrogenative C-H Amination of Indoles with Unactivated Amine. Org Lett 2023; 25:7716-7720. [PMID: 37842950 DOI: 10.1021/acs.orglett.3c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, a direct cross-dehydrogenative C-H amination of indoles has been successfully achieved, enabled by the merger of photocatalysis with nickel catalysis. This developed process does not require stoichiometric oxidants and prefunctionalization of amine partners, providing a concise platform for C-N bond formation. Moreover, the synthetic practicality of this transformation was well revealed by its high step- and atom-economy, high reaction efficiency, and broad functional group tolerance.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
13
|
Dey J, Banerjee N, Daw S, Guin J. Photochemical Oximesulfonylation of Alkenes Using Sulfonyl-Oxime-Ethers as Bifunctional Reagents. Angew Chem Int Ed Engl 2023; 62:e202312384. [PMID: 37653722 DOI: 10.1002/anie.202312384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
Utilization of oxime ethers as bifunctional reagents remains unknown. Herein, we present a mechanistically distinct strategy that enables oximesulfonylation of olefins using sulfonyl-oxime-ethers as bifunctional reagents under metal-free photochemical conditions. Via concomitant C-S and C-C bond formation, the process permits incorporation of oxime and sulfonyl groups into olefins in a complete atom-economic fashion, providing rapid access to multi-functionalized β-sulfonyl oxime ethers with good yields and stereoselectivity. The method is amenable to functionalization of complex bioactive molecules and is shown to be scalable. A radical chain mechanism initiated via photochemical Hydrogen Atom Transfer (HAT) mediated N-O bond cleavage is suggested for the process, based on our results on mechanistic investigations.
Collapse
Affiliation(s)
- Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Swikriti Daw
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
14
|
Sang JW, Du P, Xia D, Zhang Y, Wang J, Zhang WD. EnT-Mediated Amino-Sulfonylation of Alkenes with Bifunctional Sulfonamides: Access to β-Amino Sulfone Derivatives. Chemistry 2023; 29:e202301392. [PMID: 37218305 DOI: 10.1002/chem.202301392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
β-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.
Collapse
Affiliation(s)
- Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peiyu Du
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dingding Xia
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| |
Collapse
|
15
|
Gao C, Zeng J, Zhang X, Liu Y, Zhan ZP. A Photosensitizer for N-O Bond Activation: 2,7-Br-4CzIPN-Catalyzed Difunctionalization of Alkenes with Oxime Esters. Org Lett 2023; 25:3146-3151. [PMID: 37083314 DOI: 10.1021/acs.orglett.3c01073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We developed 2,4,5,6-tetrakis(2,7-dibromo-9H-carbazol-9-yl)isophthalonitrile (2,7-Br-4CzIPN) as a new photosensitizer for the energy-transfer-driven N-O bond dissociation of oxime esters. In the presence of 2,7-Br-4CzIPN, difunctionalization of alkenes with oxime esters, including oxyimination, aminocarboxylation, and amidylimination, could afford a variety of versatile molecules in good yields with excellent regioselectivity, which widely occur in natural products and drugs. Our theoretical investigations and experiments have demonstrated that 2,7-Br-4CzIPN has unique photophysical properties, favorable triplet energy, and excellent photocatalytic activity.
Collapse
Affiliation(s)
- Cai Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jiahao Zeng
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xianming Zhang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yanzhi Liu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
16
|
Wang L, Yu Y, Deng L, Du K. Photochemical and Atom-Economical Sulfonylimination of Alkenes with Bifunctional N-Sulfonyl Ketimine. Org Lett 2023; 25:2349-2354. [PMID: 36972414 DOI: 10.1021/acs.orglett.3c00724] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
An organo-photocatalytic sulfonylimination of alkenes was developed by employing readily available N-sulfonyl ketimines as bifunctional reagents. This transformation, featuring prominent functional group tolerance, provides a direct and atom-economic approach for the synthesis of valuable β-amino sulfone derivatives as a single regioisomer. In addition to terminal alkenes, internal alkenes participate in this reaction with high diastereoselectivity. N-Sulfonyl ketimines with aryl or alkyl substituents were found to be compatible with this reaction condition. This method could be applied in the late-stage modifications of drugs. Additionally, a formal insertion of alkene into cyclic sulfonyl imine was observed, affording a ring expansion product.
Collapse
|
17
|
Chen JQ, Luo X, Chen M, Chen Y, Wu J. Visible-Light-Induced 1,7-Enyne Dicyclization: Synthesis of Ester-Substituted Benzo[ j]phenanthridines. Org Lett 2023; 25:1978-1983. [PMID: 36912498 DOI: 10.1021/acs.orglett.3c00544] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A novel alkoxycarbonyl-radical-triggered cascade cyclization of 1,7-enynes, with alkyloxalyl chlorides as the ester units, for the synthesis of benzo[j]phenanthridines is described. The reaction conditions exhibit excellent compatibility with a broad range of alkoxycarbonyl radical sources and realize the installation of an ester group in the polycyclic compound. This radical cascade cyclization reaction features excellent functional group tolerance, mild reaction conditions, and good to excellent yields.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiangxiang Luo
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Meiling Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Yi Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
18
|
Zheng Y, Liao Z, Xie Z, Chen H, Chen K, Xiang H, Yang H. Photochemical Alkene Trifluoromethylimination Enabled by Trifluoromethylsulfonylamide as a Bifunctional Reagent. Org Lett 2023; 25:2129-2133. [PMID: 36943094 DOI: 10.1021/acs.orglett.3c00577] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Herein, we disclose a facile and versatile trifluoromethylimination of alkene with a rationally designed N-(diphenylmethylene)-1,1,1-trifluoromethanesulfonamide as a bench-stable and readily accessible carboamination reagent. Enabled by an energy transfer (EnT) process, an array of alkenes were able to be facilely CF3-iminated under metal-free photocatalytic conditions. The mild reaction conditions and good functional group compatibility render this protocol highly valuable for the difunctionalization of olefins with structural complexity and diversity.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zihao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hongbin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
19
|
Luo XL, Li SS, Jiang YS, Liu F, Li SH, Xia PJ. Photocatalytic 1,2-Iminosulfonylation and Remote 1,6-Iminosulfonylation of Olefins. Org Lett 2023; 25:1742-1747. [PMID: 36883883 DOI: 10.1021/acs.orglett.3c00437] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A new class of iminosulfonylation reagents were developed and extensively used in the 1,2-iminosulfonylation of various olefins. Olefins containing bioactive molecules, such as indomethacin, gemfibrozil, clofibrate, and fenbufen, afforded the desired iminosulfonylation products in synthetically useful yields. Furthermore, the first remote 1,6-iminosulfonylation of alkenes was realized by using oxime ester bifunctionalization reagents. Overall, more than 40 structurally diverse β-imine sulfones were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Hui Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
20
|
Li SS, Jiang YS, Luo XL, Pan CX, Xia PJ. Photoinduced Remote C(sp 3)-H Imination Enabled by Vinyl Radical-Mediated 1,5-Hydrogen Atom Transfer. Org Lett 2023; 25:1595-1599. [PMID: 36826423 DOI: 10.1021/acs.orglett.3c00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A vinyl radical-mediated 1,5-hydrogen atom transfer strategy for remote C(sp3)-H imination under visible-light-induced photochemical metal-free conditions afforded diverse γ-imino alkenes with excellent stereoselectivity. Oxime ester-based bifunctional reagents provided not only nucleophilic alkyl radicals for radical addition reactions with electron-deficient alkynes but also long-lived steady-state imine radicals for trapping alkyl radicals following the intramolecular 1,5-hydrogen migration of unstable olefin radicals.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Cheng-Xue Pan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
21
|
Tan G, Paulus F, Petti A, Wiethoff MA, Lauer A, Daniliuc C, Glorius F. Metal-free photosensitized radical relay 1,4-carboimination across two distinct olefins. Chem Sci 2023; 14:2447-2454. [PMID: 36873844 PMCID: PMC9977457 DOI: 10.1039/d2sc06497a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Intermolecular carboamination of olefins offers a powerful platform for the rapid construction of structurally complex amines from abundant feedstocks. However, these reactions often require transition-metal catalysis, and are mainly limited to 1,2-carboamination. Herein, we report a novel radical relay 1,4-carboimination across two distinct olefins with alkyl carboxylic acid-derived bifunctional oxime esters via energy transfer catalysis. The reaction is highly chemo- and regioselective, and multiple C-C and C-N bonds were formed in a single orchestrated operation. This mild and metal-free method features a remarkably broad substrate scope with excellent tolerance of sensitive functional groups, therefore providing easy access to structurally diverse 1,4-carboiminated products. Moreover, the obtained imines could be easily converted into valuable biologically relevant free γ-amino acids.
Collapse
Affiliation(s)
- Guangying Tan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Alessia Petti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Maxim-Aleksa Wiethoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Anna Lauer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
22
|
Tan G, Paulus F, Rentería-Gómez Á, Lalisse RF, Daniliuc CG, Gutierrez O, Glorius F. Highly Selective Radical Relay 1,4-Oxyimination of Two Electronically Differentiated Olefins. J Am Chem Soc 2022; 144:21664-21673. [PMID: 36383483 PMCID: PMC10242452 DOI: 10.1021/jacs.2c09244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radical addition reactions of olefins have emerged as an attractive tool for the rapid assembly of complex structures, and have plentiful applications in organic synthesis, however, such reactions are often limited to polymerization or 1,2-difunctionalization. Herein, we disclose an unprecedented radical relay 1,4-oxyimination of two electronically differentiated olefins with a class of bifunctional oxime carbonate reagents via an energy transfer strategy. The protocol is highly chemo- and regioselective, and three different chemical bonds (C-O, C-C, and C-N bonds) were formed in a single operation in an orchestrated manner. Notably, this reaction provides rapid access to a large variety of structurally diverse 1,4-oxyimination products, and the obtained products could be easily converted into valuable biologically relevant δ-hydroxyl-α-amino acids. With a combination of experimental and theoretical methods, the mechanism for this 1,4-oxyimination reaction has been investigated. Theoretical calculations reveal that a radical chain mechanism might operate in the reaction.
Collapse
Affiliation(s)
- Guangying Tan
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Fritz Paulus
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Constantin G Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
23
|
Jiang YS, Liu F, Huang MS, Luo XL, Xia PJ. Photocatalytic Modular Cyanoalkylamination of Alkenes Involving Two Different Iminyl Radicals. Org Lett 2022; 24:8019-8024. [PMID: 36264241 DOI: 10.1021/acs.orglett.2c03233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular cyanoalkylamination of alkenes using bench-stable and easy-to-handle α-imino-oxy acid oxime esters as difunctional reagents creates new synthetic avenues. A metal-free photosensitization protocol for the installation of both amino and cyanoalkyl functionalities onto alkene feedstocks in a single step via two differently reactive nitrogen-centered radicals was developed via energy-transfer catalysis. Excellent functional group tolerance and mild reaction conditions also render this protocol suitable for the cyanoalkylamination of pharmaceutically relevant molecule-derived alkenes.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Miao-Sha Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
24
|
Zheng Y, Wang Z, Ye Z, Tang K, Xie Z, Xiao J, Xiang H, Chen K, Chen X, Yang H. Regioselective Access to Vicinal Diamines by Metal‐Free Photosensitized Amidylimination of Alkenes with Oxime Esters. Angew Chem Int Ed Engl 2022; 61:e202212292. [DOI: 10.1002/anie.202212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhu‐Jun Wang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhi‐Peng Ye
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhen‐Zhen Xie
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Jun‐An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning 530001 Guangxi P. R. China
| | - Hao‐Yue Xiang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 Henan P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Xiao‐Qing Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| |
Collapse
|
25
|
Zhao X, Zhang C, Zhang H, Zheng X, Liang J, Liang Q, Lin W. Metal-free photosensitized intermolecular carboimination of alkenes: a green and direct access to both β-amino acids and β-amino ketones. Org Biomol Chem 2022; 20:7593-7598. [PMID: 36128897 DOI: 10.1039/d2ob01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Amino carbonyl substructures are privileged motifs in natural products and active pharmaceutical compounds. Here, we report a photoinduced metal-free and highly regioselective intermolecular carboimination method via the simultaneous introduction of amino and carbonyl groups into the CC double bond in one step, providing straightforward, green and general access to both β-amino acid and β-amino ketone motifs from readily available alkene feedstocks. The mild reaction conditions, excellent functional group tolerance and product diversity should make this a broadly applicable carboimination approach of very broad interest to organic and medicinal chemists.
Collapse
Affiliation(s)
- Xingda Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Cairong Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Hengyue Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Xiaolan Zheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Jiayu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Qianqian Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Weilong Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
26
|
Zheng Y, Wang ZJ, Ye ZP, Tang K, Xie ZZ, Xiao JA, Xiang HY, Chen K, Chen XQ, Yang H. Regioselective Access to Vicinal Diamines by Metal‐Free Photosensitized Amidylimination of Alkenes with Oxime Esters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zheng
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhu-Jun Wang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Peng Ye
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Kai Tang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Zhen Xie
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Jun-An Xiao
- Nanning Normal University Guangxi Key Laboratory of Natural Polymer Chemistry and Physics CHINA
| | - Hao-Yue Xiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Kai Chen
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Xiao-Qing Chen
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Hua Yang
- Central South University School of Chemistry and Chemical Engineering chang sha citylushan south road NO:932 410083 chang sha CHINA
| |
Collapse
|
27
|
Abstract
A radical shift toward energy transfer photocatalysis from electron transfer photocatalysis under visible-light photoirradiation is often due to the greener prospects of atom and process economy. Recent advances in energy transfer photocatalysis embrace unique strategies for direct small-molecule activation and sometimes extraordinary chemical bond formation in the absence of additional/sacrificial reagents. Selective energy transfer photocatalysis requires careful selection of substrates and photocatalysts for a perfect match with respect to their triplet energies while having incompatible redox potentials to prevent competitive electron transfer pathways. Substrates containing labile N-O bonds are potential targets for generating reactive key intermediates via photocatalysis to access a variety of functionalized molecules. Typically, the differential electron densities of N and O heteroatoms have been exploited for generation of either N- or O-centered radical intermediates from the functionalized substrates by the electron transfer pathway. However, the latest developments involve direct N-O bond homolysis via energy transfer to generate both N- and O-centered radicals for their subsequent utilization in diverse organic transformations, also in the absence of sacrificial redox reagents. In this Account, we highlight our key contributions in the field of N-O bond activation via energy transfer photocatalysis to generate reactive radical intermediates, with coverage of useful mechanistic insights. More specifically, well-designed N-O bond-containing substrates such as 1,2,4-oxadiazolines, oxime esters, N-indolyl carbonates, and N-enoxybenzotriazoles were successfully utilized in versatile transformations involving selective energy transfer over electron transfer from photocatalysts with high triplet state energy. Direct access to reactive N-, O-, and C-centered (if decarboxylation follows) radical intermediates was achieved for diverse cross-couplings and rearrangement processes. In particular, a variety of open-shell nitrogen reactive intermediates, including N(sp2) and N(sp3) radicals and nitrenes, have been utilized. Notably, diversified transformations of identical substrates have been achieved through careful control of the reaction conditions. 1,2,4-Oxadiazolines were converted into spiro-azolactams through iminyl intermediates in the presence of 1O2, benzimidazoles, or sulfoximines with external sulfoxide reagent through triplet nitrene intermediates under inert conditions. Besides, oxime esters underwent either intramolecular C(sp3)-N radical-radical coupling or intermolecular C(sp3)-N radical-radical coupling by a combined energy transfer-hydrogen atom transfer strategy. Furthermore, a series of electrochemical and photophysical experiments as well as computational studies were performed to substantiate the proposed selective energy-transfer-driven reaction pathways. We hope that this Account will serve as a guide for the rational design of selective energy transfer processes through the activation of further labile chemical bonds.
Collapse
Affiliation(s)
- Da Seul Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Vineet Kumar Soni
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| |
Collapse
|
28
|
Majhi J, Dhungana RK, Rentería-Gómez Á, Sharique M, Li L, Dong W, Gutierrez O, Molander GA. Metal-Free Photochemical Imino-Alkylation of Alkenes with Bifunctional Oxime Esters. J Am Chem Soc 2022; 144:15871-15878. [PMID: 35984388 PMCID: PMC10245625 DOI: 10.1021/jacs.2c07170] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concurrent installation of C-C and C-N bonds across alkene frameworks represents a powerful tool to prepare motifs that are ubiquitous in pharmaceuticals and bioactive compounds. To construct such prevalent bonds, most alkene difunctionalization methods demand the use of precious metals or activated alkenes. We report a metal-free, photochemically mediated imino-alkylation of electronically diverse alkenes to install both alkyl and iminyl groups in a highly efficient manner. The exceptionally mild reaction conditions, broad substrate scope, excellent functional group tolerance, and facile one-pot reaction protocol highlight the utility of this method to prepare privileged motifs from readily available alkene and acid feedstocks. One key and striking feature of this transformation is that an electrophilic trifluoromethyl radical is equally efficient with both electron-deficient and electron-rich alkenes. Additionally, dispersion-corrected density functional theory (DFT) and empirical investigations provide detailed mechanistic insight into this reaction.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Longbo Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
29
|
Wang X, Chen Y, Liang P, Chen JQ, Wu J. Synthesis of γ-amino acids via photocatalyzed intermolecular carboimination of alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00741j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a direct approach to achieve the energy transfer-driven carboimination of alkenes for the synthesis of a diverse collection of valuable γ-amino acids.
Collapse
Affiliation(s)
- Xinhua Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000, China
| | - Yi Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000, China
| | - Ping Liang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|