1
|
Yang Q, Song E, Wu Y, Li C, Gau MR, Anna JM, Schelter EJ, Walsh PJ. Mechanistic Investigation of the Ce(III) Chloride Photoredox Catalysis System: Understanding the Role of Alcohols as Additives. J Am Chem Soc 2025; 147:2061-2076. [PMID: 39752645 DOI: 10.1021/jacs.4c15627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt4]2[CeIVCl6] (1) produces •Cl and added alcohols exhibit zero-order kinetics. Prior studies by other researchers suggested that 1 and alcohols lead to cerium alkoxide [Ce-OR] and alkoxy radical intermediates. To understand these seemingly divergent mechanistic proposals, an expanded investigation comparing cerium(IV) catalyst 1 and cerium(III) complex [NEt4]3[CeIIICl6] (2), which exhibit markedly different reactivity and C-H selectivity, is disclosed. Our findings reveal that alcohol additives accelerate the conversion of cerium(III) to cerium(IV) catalysts, forming key intermediates such as [NEt4]2[CeIIICl5(HOCH3)] (5) and [NEt4]2[CeIVCl5(OCH3)] (6), driven by excited-state di-tert-butyl azodicarboxylate under blue light irradiation. The active complex 6 releases the •OCH3 radical, in sharp contrast to •Cl radicals initiated by cerium(IV) photoredox catalyst 1. These different reactivity and selectivity profiles can be understood in the context of complex 5 generation and in situ formation of base to afford complex 6. Experimental validation shows enhanced selectivity toward C-H bonds with different reactivity with catalyst 1 and methanol upon the addition of base and decreased selectivity with catalyst 2 and methanol upon the addition of acid. These findings unify the previously contrasting observations of cerium halide/alkoxide photocatalytic systems and provide a comprehensive understanding on the essential role of base/acid and alcohol in selectivity and reactivity.
Collapse
Affiliation(s)
- Qiaomu Yang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Ellen Song
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Yu Wu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Chenshuai Li
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Jessica M Anna
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 S. 33rd St., 311A Towne Building, Philadelphia, Pennsylvania 19104, United States
- Department of Earth and Environmental Science, University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Wang Z, Tang Y, Liu S, Zhao L, Li H, He C, Duan C. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp 3)-H functionalization with coordination polymer. Nat Commun 2024; 15:8813. [PMID: 39394220 PMCID: PMC11470074 DOI: 10.1038/s41467-024-53115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Activation and selective oxidation of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry due to the inherent inertness of C(sp3)-H bonds. In this study, inspired by natural monooxygenases, we developed a coordination polymer with naphthalenediimide (NDI)-based ligands and binuclear iron nodes. The mixed-valence FeIIIFeII species and chlorine radicals (Cl•) are generated via ligand-to-metal charge transfer (LMCT) between FeIII and chlorine ions. These Cl• radicals abstract a hydrogen atom from the inert C(sp3)-H bond of alkanes via hydrogen atom transfer (HAT). In addition, NDI converts oxygen to 1O2 via energy transfer (EnT), which then coordinates to FeII, forming an FeIV = O intermediate for the selective oxidation of C(sp3)-H bonds. This synthetic platform, which combines photoinduced EnT, LMCT and HAT, provides a EnT-mediated parallel multiphoton excitation strategy with kinetic synergy effect for selective C(sp3)-H oxidation under mild conditions and a blueprint for designing coordination polymer-based photocatalysts for C(sp3)-H bond oxidation.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
3
|
Goodwin MJ, Deetz AM, Griffin PJ, Meyer GJ. Periodic Trends in Intra-ionic Excited State Quenching by Halide. Inorg Chem 2024; 63:15772-15783. [PMID: 39120873 DOI: 10.1021/acs.inorgchem.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The preassociation of reactants in a photoinitiated redox reaction through the use of noncovalent interactions can have a significant impact on excited state reactivity. As these noncovalent interactions render some stabilization to the associated species, they impact the kinetics and thermodynamics of photoinitiated electron transfer. Reported herein is a novel iridium(III) photocatalyst, equipped with an anion-sensitive, amide-substituted bipyridine ligand, and its reactivity with the halides (X = I-, Br-, Cl-) in acetonitrile and dichloromethane. A noteworthy periodic trend was observed, where the size and electron affinity dramatically altered the observed photoredox behavior. The binding affinity for the halides increased with decreasing ionic radius (Keq ∼103 to >106) in a polar medium but association was stoichiometric for each halide in a nonpolar medium. Evidence for the static quenching of iodide and bromide is presented while dynamic quenching was observed with all halides. These results highlight how the photophysics of halide adducts and the thermodynamics of intra-ionic photo-oxidation are impacted as a consequence of preassociation of a quencher through hydrogen bonding.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul J Griffin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Sands GG, Cook AK, Delabbio A, Fuhrer T, Bailey MD, Leach EG, Purosky IR, Biros SM. Three derivatives of phenacyldiphenylphosphine oxide: influence of aromatic and alkyl substituents on the luminescence sensitization of four Ln(NO 3) 3 salts. Dalton Trans 2024. [PMID: 38236132 DOI: 10.1039/d3dt03556e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A series of four β-carbonylphosphine oxide compounds have been synthesized, and their complexes with the nitrate salts of Sm3+, Eu3+, Tb3+ and Dy3+ have been characterized in solution and in the solid state. Analysis of the complexes using IR and NMR suggests that metal-ligand binding occurs mainly through the phosphine oxide group of the ligand, with some involvement of the carbonyl group. All 16 complexes luminesce in solutions of acetonitrile, albeit with varying degrees of intensity. The highest quantum yield values obtained for this series are those where the ligand contains an aryl carbonyl group paired with an electron rich phosphine oxide group (29.8 and 11% for the Tb3+ and Eu3+ complexes, respectively). In contrast, the longest emission lifetime values were found for complexes where the ligand contains a bulky substituent on the carbonyl group paired with an electron rich phosphine oxide (1.86, 1.402, 0.045 ms for the Tb3+, Eu3+ and Sm3+ complexes, respectively).
Collapse
Affiliation(s)
- Georgia G Sands
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Alyssa K Cook
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Angelina Delabbio
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Tim Fuhrer
- Department of Chemistry, Radford University, Radford, VA 24142, USA
| | - Matthew D Bailey
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Erin G Leach
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Isabella R Purosky
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| | - Shannon M Biros
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| |
Collapse
|
5
|
He X, Wang Z, He X, Liu H, Chen J, Li H, Wang C. A Plant Dye for Photocatalytic Methane Conversion. Chemistry 2023; 29:e202301796. [PMID: 37503795 DOI: 10.1002/chem.202301796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
A metal-free natural dye has been developed to selectively convert methane to methyl trifluoroacetate (CH3 TFA) using visible light, probably due to the formation of a chloride-bridged dimer undergoing fast intra-complex charge transfer.
Collapse
Affiliation(s)
- Xuefeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zihan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xinru He
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Huichong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Han Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
6
|
Deetz AM, Goodwin MJ, Kober EA, Meyer GJ. Nanosecond Intra-Ionic Chloride Photo-Oxidation. Inorg Chem 2023; 62:11414-11425. [PMID: 37428627 DOI: 10.1021/acs.inorgchem.3c00970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Transition-metal photocatalysts capable of oxidizing chloride are rare yet serve as an attractive means to controllably generate chlorine atoms, which have continued to garner the interest of researchers for notable applications in photoredox catalysis and solar energy storage. Herein, a new series of four Ir-photocatalysts with different dicationic chloride-sequestering ligands were synthesized and characterized to probe the relationship between chloride binding affinities, ion pair solution structures, and rate constants for chloride photo-oxidation in acetonitrile at room temperature. The substituents on the quaternary amines of dicationic bipyridine ligands had negligible effects on the photocatalyst excited-state reduction potential, yet dramatically influenced the affinity for chloride binding, indicating that synthetic design can be utilized to independently tune these important properties. An inverse correlation was observed between the equilibrium constant for chloride ion pairing and the rate constant for intra-ionic chloride oxidation. Exceptions to this trend suggest structural differences in the ion-paired solution structures, which were probed by 1H NMR binding experiments. This study provides new insights into light-induced oxidation of ion-paired substrates, a burgeoning approach that offers to circumvent diffusional constraints of photocatalysts with short excited-state lifetimes. Ground-state association of chloride with these photocatalysts enables intra-ionic chloride oxidation on a rapid nanosecond timescale.
Collapse
Affiliation(s)
- Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erin A Kober
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Birnthaler D, Narobe R, Lopez-Berguno E, Haag C, König B. Synthetic Application of Bismuth LMCT Photocatalysis in Radical Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dominik Birnthaler
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Rok Narobe
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Eliseo Lopez-Berguno
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Haag
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Kynman AE, Elghanayan LK, Desnoyer AN, Yang Y, Sévery L, Di Giuseppe A, Tilley TD, Maron L, Arnold PL. Controlled monodefluorination and alkylation of C(sp 3)-F bonds by lanthanide photocatalysts: importance of metal-ligand cooperativity. Chem Sci 2022; 13:14090-14100. [PMID: 36540817 PMCID: PMC9728647 DOI: 10.1039/d2sc04192h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/05/2022] [Indexed: 08/01/2023] Open
Abstract
The controlled functionalization of a single fluorine in a CF3 group is difficult and rare. Photochemical C-F bond functionalization of the sp3-C-H bond in trifluorotoluene, PhCF3, is achieved using catalysts made from earth-abundant lanthanides, (CpMe4)2Ln(2-O-3,5- t Bu2-C6H2)(1-C{N(CH)2N(iPr)}) (Ln = La, Ce, Nd and Sm, CpMe4 = C5Me4H). The Ce complex is the most effective at mediating hydrodefluorination and defluoroalkylative coupling of PhCF3 with alkenes; addition of magnesium dialkyls enables catalytic C-F bond cleavage and C-C bond formation by all the complexes. Mechanistic experiments confirm the essential role of the Lewis acidic metal and support an inner-sphere mechanism of C-F activation. Computational studies agree that coordination of the C-F substrate is essential for C-F bond cleavage. The unexpected catalytic activity for all members is made possible by the light-absorbing ability of the redox non-innocent ligands. The results described herein underscore the importance of metal-ligand cooperativity, specifically the synergy between the metal and ligand in both light absorption and redox reactivity, in organometallic photocatalysis.
Collapse
Affiliation(s)
- Amy E Kynman
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Luca K Elghanayan
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Addison N Desnoyer
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Yan Yang
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Sévery
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Andrea Di Giuseppe
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Laurent Maron
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Polly L Arnold
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
9
|
Li P, Deetz AM, Hu J, Meyer GJ, Hu K. Chloride Oxidation by One- or Two-Photon Excitation of N-Phenylphenothiazine. J Am Chem Soc 2022; 144:17604-17610. [DOI: 10.1021/jacs.2c07107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Alexander M. Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Jiaming Hu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|