1
|
Hu J, Wang L, Song Z, Zhou M, Lai M, Cui B, Xiao M, Yang J, Wu C, Zhao M. Preparation and properties of thermal responsive 2,3-diethyl-5-methylpyrazine fragrance microcapsules with β-CD/CS as wall materials. Int J Biol Macromol 2024; 283:137853. [PMID: 39566799 DOI: 10.1016/j.ijbiomac.2024.137853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
2,3-Diethyl-5-methylpyrazine (DEMP) is recognized for its unique nutty scent but faces limitations due to rapid evaporation. The primary objective of this study was to explore the effect of incorporating DEMP with β-cyclodextrin (β-CD) and chitosan (CS) as wall material on the microstructure and thermal release behavior, antibacterial, and antioxidant characteristics. Initially, the microcapsules preparation process underwent optimization with embedding rate of 78.03 % through response surface by ultrasonic technique. The characterization of microcapsules was confirmed through SEM, FT-IR and TEM, with the majority exhibiting smooth and shell core structures that overlapped. Through sustained release kinetics analysis, the release of microcapsules under 80 °C, 50 °C and room temperature was more in line with the first-order kinetic and Avrami kinetic equation. The heat release kinetics analysis yielded a well-matched linear fitting curve. Additionally, microcapsules effectively suppressed the growth of S. aureus and E. coli germs, and demonstrated strong antioxidant properties, compared with DEMP. Adding 10 mg microcapsules to the Heat Not Burning (HNB) cigarette, the sensory quality was significantly improved. This discovery has the potential to pave a new route for the encapsulation of fragrance molecules, and expanding their multifunctional usages for enhancing the flavor of cigarettes and food.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Longfei Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zuguo Song
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China
| | - Meng Zhou
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Menglan Xiao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianli Yang
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China
| | - Chengchun Wu
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China.
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Permadi N, Nurzaman M, Doni F, Julaeha E. Elucidation of the composition, antioxidant, and antimicrobial properties of essential oil and extract from Citrus aurantifolia (Christm.) Swingle peel. Saudi J Biol Sci 2024; 31:103987. [PMID: 38617568 PMCID: PMC11007538 DOI: 10.1016/j.sjbs.2024.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
The most effective methodologies for generating Musa spp. explants involve the utilization of plant tissue culture micropropagation techniques. However, the pervasive challenge of microbial contamination significantly impedes the successful micropropagation of Musa spp. This study examined the antioxidant and antibacterial characteristics of the essential oil (LPO) and extract (LPE) obtained from the peel of Citrus aurantifolia. Additionally, we explored their mechanisms against common microbial contaminants in Musa spp. micropropagation. Using gas chromatography-mass spectrometry, we identified 28 components in LPO, with δ-limonene, β-pinene, citral, trans-citral, β-bisabolene, geranyl acetate, and α-pinene as the primary constituents. Meanwhile, liquid chromatography-mass spectrometry detected 17 components in LPE, highlighting nobiletin, tangeretin, scoparone, sinensetin, tetramethylscutellarein, 5-demethylnobiletin, and pyropheophorbide A as the predominant compounds. Evaluation using the DPPH and ABTS methods revealed the IC50 values for LPE at 0.66 ± 0.009 and 0.92 ± 0.012 mg/mL, respectively, indicating higher antioxidant activity compared to LPO, with IC50 values of 3.03 ± 0.019 and 4.27 ± 0.023 mg/mL using the same methods. Both LPO and LPE exhibited antimicrobial activities against all tested contaminant microorganisms through in vitro assays. Mechanistic investigations employing time-kill analysis, assessment of cell membrane integrity, and scanning electron microscopy (SEM) revealed changes in the morphological characteristics of the tested microbial contaminants, intensifying with increased concentration and exposure duration of LPO and LPE. These alterations led to substantial damage, including cell wall lysis, leakage of intracellular components, and subsequent cell death. Consequently, LPO and LPE emerge as promising alternatives for addressing microbial contamination in banana tissue cultures.
Collapse
Affiliation(s)
- Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
3
|
Indriyani NN, Al-Anshori J, Wahyudi T, Nurzaman M, Nurjanah S, Permadi N, Julaeha E. An optimized chitosan/alginate-based microencapsulation of lime peel essential oil and its application as an antibacterial textile. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:989-1007. [PMID: 38340314 DOI: 10.1080/09205063.2024.2313829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
A functional textile immobilized by microcapsules of the lime peel essential oils of C. aurantifolia (LPEO) was prepared and characterized. A varied amount of Chitosan/Alginate (CH/AG) ratios, followed by a mass of LPEO and concentration of sodium tripolyphosphate (STPP) crosslinker, was optimized sequentially to coacervate LPEO using a Tween 80 emulsifier. An antibacterial assay against both Gram-positive and Gram-negative bacteria was further evaluated for the embedded microcapsules. The LPEO (0.2 g) was effectively coacervated by CH/AG (5:3) crosslinked by 2% of STTP to give a yield, oil content (OC), and encapsulation efficiency (EE) of 53.45 ± 2.16%, 65.08 ± 2.60% and 85.04 ± 0.70% respectively. A rough spherical shape of LPEO microcapsules was homogeneously observed with an average particle size of 0.757 mm. An Avrami's kinetic model revealed the release mechanism of the core following zero-order kinetics (k = 1.11 ± 0.13 × 10-9 s-1, Ea = 70.21 kJ/mol). The LPEO microcapsules demonstrated good thermal stability up to 122 °C and maintained 38% OC at ambient temperature for four weeks. A 70.34 ± 4.16% of the LPEO microcapsules were successfully overlaid onto the gauze with citric acid binder and sodium phosphate catalyst. Overall, the immobilized microcapsules exhibited strong inhibition against S. aureus and moderate against S. epidermidis, E. coli, and K. pneumonia.
Collapse
Affiliation(s)
- Nastiti Nur Indriyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Jamaludin Al-Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Tatang Wahyudi
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Sarifah Nurjanah
- Department of Agriculture of Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
4
|
Tang S, Zhang L, Tong Z, Wu Z, Wang H, Zhan P, Shao L, Qing Y, Wu Y, Liu J. Encapsulated lignin-based slow-release manganese fertilizer with reduced cadmium accumulation in rice (Oryza sativa L.). Int J Biol Macromol 2024; 262:130019. [PMID: 38331077 DOI: 10.1016/j.ijbiomac.2024.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
As an essential trace element for plant growth and development, manganese plays a crucial role in the uptake of the heavy metal cadmium by rice (Oryza sativa L.). In this study, we developed a novel slow-release manganese fertilizer named Mn@LNS-EL. Initially, lignin nanoparticles were derived from sodium lignosulfonate, and a one-step emulsification strategy was employed to prepare a water-in-oil-in-water (W/O/W) Pickering double emulsions. These double emulsions served as the template for interfacial polymerization of lignin nanoparticles and epichlorohydrin, resulting in the formation of microcapsule wall materials. Subsequently, manganese fertilizer (MnSO4) was successfully encapsulated within the microcapsules. Hydroponic experiments were conducted to investigate the effects of Mn@LNS-EL on rice growth and the cadmium and manganese contents in the roots and shoots of rice under cadmium stress conditions. The results revealed that the treatment with Mn@LNS-EL markedly alleviated the inhibitory effects of cadmium on rice growth, leading to notably lower cadmium levels in the rice roots and shoots compared to the specimens treated without manganese fertilizer. Specifically, there was a reduction of 37.9 % in the root cadmium content and a 17.1 % decrease in the shoot cadmium content. In conclusion, this study presents an innovative approach for the high-value utilization of lignin through effective encapsulation and slow-release mechanisms of trace-element fertilizers while offering a promising strategy for efficiently remediating cadmium pollution in rice.
Collapse
Affiliation(s)
- Shifeng Tang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States.
| | - Zhaohui Tong
- School of Chemical & Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hui Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yougen Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
5
|
Brah AS, Armah FA, Obuah C, Akwetey SA, Adokoh CK. Toxicity and therapeutic applications of citrus essential oils (CEOs): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2158864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Augustine S. Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Collins Obuah
- Department of Chemistry, University of Ghana, Legon, Ghana
| | - Samuel A. Akwetey
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale
| | - Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
6
|
Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods 2023; 12:2036. [PMID: 37238855 PMCID: PMC10217416 DOI: 10.3390/foods12102036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus aurantifolia is part of the Rutaceae family and belongs to the genus Citrus. It is widely used in food, the chemical industry, and pharmaceuticals because it has a unique flavor and odor. It is nutrient-rich and is beneficial as an antibacterial, anticancer, antioxidant, anti-inflammatory, and insecticide. Secondary metabolites present in C. aurantifolia are what give rise to biological action. Flavonoids, terpenoids, phenolics, limonoids, alkaloids, and essential oils are among the secondary metabolites/phytochemicals discovered in C. aurantifolia. Every portion of the plant's C. aurantifolia has a different composition of secondary metabolites. Environmental conditions such as light and temperature affect the oxidative stability of the secondary metabolites from C. aurantifolia. The oxidative stability has been increased by using microencapsulation. The advantages of microencapsulation are control of the release, solubilization, and protection of the bioactive component. Therefore, the chemical makeup and biological functions of the various plant components of C. aurantifolia must be investigated. The aim of this review is to discuss the bioactive components of C. aurantifolia such as essential oils, flavonoids, terpenoids, phenolic, limonoids, and alkaloids obtained from different parts of the plants and their biological activities such as being antibacterial, antioxidant, anticancer, an insecticide, and anti-inflammatory. In addition, various extraction techniques of the compounds out of different parts of the plant matrix as well as the microencapsulation of the bioactive components in food are also provided.
Collapse
Affiliation(s)
- Nastiti Nur Indriyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Jamaludin Al Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Sarifah Nurjanah
- Department of Agricultural Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| |
Collapse
|