1
|
Saldaña-Ahuactzi Z, Gómez-Montaño FJ, Morales-Chávez J, Salinas RA, Reyes-Betanzo C, Rojas-López M, Dutt A, Orduña-Díaz A. Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches. Mikrochim Acta 2025; 192:102. [PMID: 39843762 DOI: 10.1007/s00604-024-06924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests. This process involves specific facilities, a long-time analysis procedures, and skilled personnel. Conversely, biosensors are an emerging innovative approach to detecting pathogens in real time due to their portability, specificity, sensitivity, and low fabrication costs. These advantages can be achieved from the synergistic work between nanotechnology, materials science, and biotechnology for coupling biomolecules in nano-matrices to enhance biosensing performance. This review highlights recent advancements in electrochemical and optical biosensing techniques for detecting bacteria and viruses. Key properties, such as detection limits, are examined, as they depend on factors like the design of the biorecognition molecule, the type of transducer, the target's characteristics, and matrix interferences. Sensitivity levels reported range from 1 to 1 × 10⁸ CFU/mL, with detection times spanning 10 min to 8 h. Additionally, the review explores innovative approaches, including biosensors capable of distinguishing between live and dead bacteria, multimodal sensing, and the simultaneous detection of multiple foodborne pathogens - emerging trends in biosensor development.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| | - Francisco Javier Gómez-Montaño
- Instituto Tecnológico Superior de San Martín Texmelucan. Camino a Barranca de Pesos S/N., San Martín Texmelucan, 74120, Puebla, México
| | | | - Rafael A Salinas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Claudia Reyes-Betanzo
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
| | - Marlon Rojas-López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Abdú Orduña-Díaz
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| |
Collapse
|
2
|
Wang W, Yuan W, Lin T, Sun Z, Liu F, Wang D, Liu F. Three-mode ratiometric biosensor based on integrated DNA-driven magnetic beads for Clostridium perfringens detection. Food Chem 2025; 463:141228. [PMID: 39288460 DOI: 10.1016/j.foodchem.2024.141228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
A three-mode biosensor incorporated ratiometric (electrochemical/colorimetric, electrochemical/photothermal) into its design was constructed using DNA-driven magnetic beads (DMBs) as a bridge to detect C. perfringens. It further enhances the accuracy of detection results while maintaining compatibility with applications in multiple scenarios. Briefly, the G-quadruplex was combined with aptamer and immobilized onto magnetic beads through amide-bond, resulting in the integration of DMBs. The DMBs and supernatant were separated by magnetic separation when the target was present. Subsequently, the DMBs were utilized to construct the electrochemical biosensor, whereas the supernatant was used to construct colorimetric and photothermal biosensors. The limits of detection the ratiometric biosensor were ultimately reduced to 0.26 and 0.27 lg CFU g-1, respectively, in comparison to the single three-mode biosensor. Moreover, this biosensor had been applied in real-sample assays successfully. The establishment of this platform provides a new method for detecting pathogens in the fields of food safety and environmental monitoring.
Collapse
Affiliation(s)
- Wenzhuo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Yuan
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
3
|
Boodhoo N, Shoja Doost J, Sharif S. Biosensors for Monitoring, Detecting, and Tracking Dissemination of Poultry-Borne Bacterial Pathogens Along the Poultry Value Chain: A Review. Animals (Basel) 2024; 14:3138. [PMID: 39518862 PMCID: PMC11545827 DOI: 10.3390/ani14213138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The poultry industry plays a crucial role in global food production, with chickens being the most widely consumed as a rich protein source. However, infectious diseases pose significant threats to poultry health, underscoring the need for rapid and accurate detection to enable timely intervention. In recent years, biosensors have emerged as essential tools to facilitate routine surveillance on poultry farms and rapid screening at slaughterhouses. These devices provide producers and veterinarians with timely information, thereby promoting proactive disease management. Biosensors have been miniaturized, and portable platforms allow for on-site testing, thereby enhancing biosecurity measures and bolstering disease surveillance networks throughout the poultry supply chain. Consequently, biosensors represent a transformative advancement in poultry disease management, offering rapid and precise detection capabilities that are vital for safeguarding poultry health and ensuring sustainable production systems. This section offers an overview of biosensors and their applications in detecting poultry diseases, with a particular emphasis on enteric pathogens.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (S.S.)
| | | | | |
Collapse
|
4
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Wang J, Cui X, Liang L, Li J, Pang B, Li J. Advances in DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria. Talanta 2024; 275:126072. [PMID: 38615455 DOI: 10.1016/j.talanta.2024.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The detection of foodborne pathogenic bacteria is critical in preventing foodborne diseases. DNA-based electrochemical biosensors, with the merits of high sensitivity and short detection time, provide an effective detecting method for foodborne pathogens, attracting significant interest for the past few years. This review mainly describes the important research progress of DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria through four perspectives: representative foodborne pathogens detection using electrochemical approaches, DNA immobilization strategies of aptamers, DNA-based signal amplification strategies used in electrochemical DNA sensors, and functional DNA used in electrochemical DNA sensors. Finally, perspectives and challenges are presented in this field. This review will contribute to DNA-based electrochemical biosensor in enhancing the nucleic acid signal amplification.
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
6
|
Dasgupta U, Ghosh M, Chakraborty P, Park EY, Indra A, Chowdhury AD. Dual-Mode Virus Detection: Combining Electrochemical and Fluorescence Modalities for Enhanced Sensitivity and Reliability. ACS APPLIED BIO MATERIALS 2024; 7:4379-4388. [PMID: 38616360 DOI: 10.1021/acsabm.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This study introduces a dual-mode biosensor specifically designed for the quantitative detection of viruses in rapid analysis. The biosensor is unique in its use of both optical (fluorescence) and electrochemical (impedance) detection methods using the same nanocomposites, providing a dual confirmation system for virus (norovirus-like particles) quantification. The system is based on using two antibody-conjugated nanocomposites: CdSeS quantum dots and Au-N,S-GQD nanocomposites. For optical detection, the principle relies on the fluorescence quenching of CdSeS by Au-N,S-GQD in a sandwich structure with the target. Conversely, electrochemical detection is based on the change in impedance caused by the formation of the same sandwich structure. The biosensor demonstrated exceptional sensitivity, capable of detecting norovirus at concentrations of as low as femtomolar in the electrochemical method and picomolar in the optical method. In the dual-responsive concentration range from 10-13 to 10-10 M, the sensor is highly sensitive in both methods, creating significant changes in fluorescence intensity and impedance in the presence of virus. Furthermore, the biosensor exhibits a high degree of specificity, with a negligible response to nontarget proteins, even within complex test solutions. This work represents a significant advancement in the field of biosensor technology, offering a fast, accurate, and reliable method for diagnosing viral infections and diseases.
Collapse
Affiliation(s)
- Uddipan Dasgupta
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Malabika Ghosh
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Pampi Chakraborty
- Department of Microbiology, St. Xavier's College (Autonomous), 5, Mahapalika Marg, Dhobi Talao, Chhatrapati Shivaji Terminus Area, Fort, Mumbai, Maharashtra 400001, India
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| |
Collapse
|
7
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
8
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
9
|
Hsu CY, Saleh RO, Pallathadka H, Kumar A, Mansouri S, Bhupathi P, Jasim Ali SH, Al-Mashhadani ZI, Alzubaidi LH, Hizam MM. Advances in electrochemical-optical dual-mode biosensors for detection of environmental pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1306-1322. [PMID: 38344759 DOI: 10.1039/d3ay02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
10
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
11
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
12
|
Zhao S, Jia Y, Wang A, Yang J, Yang L. Dual-mode DNA walker-based optical fiber biosensor for ultrasensitive detection of microRNAs. Biosens Bioelectron 2023; 239:115613. [PMID: 37607447 DOI: 10.1016/j.bios.2023.115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
We present a novel dual-mode DNA-walker based optical fiber biosensor (DMDW-Opt biosensor) for sensitive assay of micro-RNAs in bio-samples. In the sensor system, we develop a new strategy for the cascade amplification, DNA-walker/rolling cycle amplification (RCA), by the use of the residue track of the walker. The strategy can significantly improve the response of the sensor and avoid any tedious operation procedure. Dual-mode readouts, i.e., fluorescence and chemiluminescence, are measured independently without interfering with each other to achieve reliable and accurate analysis. Optical fibers with the surface modified by gold nanoparticles are utilized as the support for fabrication of the sensor, which would be benefit for developing miniaturized and portable sensing devices. The performance of the proposed method is evaluated by using micro-RNAs (MiR-155 and MiR-21) as the analytical target. The method is successfully applied for accurate determination of micoRNAs in human serum and MCF-7 cells. Our method can perform sensitive assays of MiR-155 with limit-of-detection as low as 97.72 fM and 11.22 fM, MiR-21 with limit-of-detection as low as 107.15 fM and 8.32 fM for the fluorescence- and the chemiluminescence-readout respectively, and the biosensor exhibits excellent specificity, reproducibility and storage stability, indicating its valuable potential applications for sensing trace-amount targets in complicated real samples.
Collapse
Affiliation(s)
- Siqi Zhao
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Yaxue Jia
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
13
|
Ma H, Chen L, Lv J, Yan X, Li Y, Xu G. The rate-limiting procedure of 3D DNA walkers and their applications in tandem technology. Chem Commun (Camb) 2023; 59:10330-10342. [PMID: 37615403 DOI: 10.1039/d3cc02597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
DNA walkers, artificial dynamic DNA nanomachines, can mimic actin to move rapidly along a predefined nucleic acid track. They can generally be classified as one- (1D), two- (2D), and three-dimensional (3D) DNA walkers. In particular, 3D DNA walkers demonstrate amazing sustainable walking ability, strong enrichment ability, and fantastic signal amplification ability. In light of these, 3D DNA walkers have been widely used in fields such as biosensors, bioanalysis and cell imaging. Most notably, the strong compatibility of 3D DNA walkers allows their integration with a range of amplification strategies, effectively enhancing signal transduction and amplifying biosensor sensing signals. Herein, we first systematically expound the walking principle of the 3D walkers in this review. Then, by presenting representative examples, the research direction of 3D walkers in recent years is discussed. Furthermore, we also categorize and evaluate diverse tandem signal amplification strategies in 3D walkers. Finally, the challenges and development trends of 3D DNA walkers in the emerging field of analysis are carefully discussed. It is believed that this work can provide new ideas for researchers to quickly understand 3D DNA walkers and their applications in diverse biosensors.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Jingnan Lv
- The Second Affiliated People's Hospital of Soochow University, Suzhou 215008, China
| | - Xiaoyu Yan
- Guang'an Vocational & Technical College, Sichuan 638000, China
| | - Yonghao Li
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| |
Collapse
|
14
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
15
|
Yuan W, Wang X, Sun Z, Liu F, Wang D. A Synergistic Dual-Channel Sensor for Ultrasensitive Detection of Pseudomonas aeruginosa by DNA Nanostructure and G-Quadruplex. BIOSENSORS 2022; 13:24. [PMID: 36671859 PMCID: PMC9856186 DOI: 10.3390/bios13010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa is one of the foodborne pathogenic bacteria that greatly threatens human health. An ultrasensitive technology for P. aeruginosa detection is urgently demanded. Herein, based on the mechanism of aptamer-specific recognition, an electrochemical-colorimetric dual-mode ultrasensitive sensing strategy for P. aeruginosa is proposed. The vertices of DNA tetrahedral nanoprobes (DTNPs), that immobilized on the gold electrode were modified with P. aeruginosa aptamers. Furthermore, the G-quadruplex, which was conjugated with a P. aeruginosa aptamer, was synthesized via rolling circle amplification (RCA). Once P. aeruginosa is captured, a hemin/G-quadruplex, which possesses peroxidase-mimicking activity, will separate from the P. aeruginosa aptamer. Then, the exfoliated hemin/G-quadruplexes are collected for oxidation of the 3,3',5',5'-tetramethylbenzidine for colorimetric sensing. In the electrochemical mode, the hemin/G-quadruplex that is still bound to the aptamer catalyzes polyaniline (PANI) deposition and leads to a measurable electrochemical signal. The colorimetric and electrochemical channels demonstrated a good forward and reverse linear response for P. aeruginosa within the range of 1-108 CFU mL-1, respectively. Overall, compared with a traditional single-mode sensor for P. aeruginosa, the proposed dual-mode sensor featuring self-calibration not only avoids false positive results but also improves accuracy and sensitivity. Furthermore, the consistency of the electrochemical/colorimetric assay was verified in practical meat samples and showed great potential for applications in bioanalysis.
Collapse
Affiliation(s)
- Wei Yuan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinxia Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|