1
|
Nacke P, Tuffin R, Klasen-Memmer M, Rudquist P, Giesselmann F. Revealing the antipolar order in the antiferroelectric SmZ A phase by means of circular alignment. Sci Rep 2024; 14:15018. [PMID: 38951542 PMCID: PMC11217385 DOI: 10.1038/s41598-024-65275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Many ferroelectric nematic liquid crystals, like one of the archetype materials, DIO, do not have a direct paraelectric N to ferroelectric NF phase transition, but exhibit yet another phase between N and NF. This phase has recently been proposed to be antiferroelectric, with a layered structure of alternating polarization normal to the average director and is sometimes referred to as Smectic ZA (SmZA). We have examined the SmZA phase in circularly rubbed (CR) cells, known to discriminate between the polar NF and the non-polar N phase from the configuration of disclination lines formed. We find that the ground state of SmZA has the same disclination configuration as the non-polar N phase, demonstrating that the SmZA phase is also non-polar, i.e., it has no net ferroelectric polarization. At the same time, the SmZA texture generally has a grainy appearance, which we suggest is partly a result of the frustration related to layered order combined with the imposed twist in CR cells. We discuss possible orientations of the smectic layers, depending on the alignment conditions. While a horizontal SmZA layer structure is always compatible with surface-induced twist, a vertical layer structure would tend to break up in a twisted bookshelf structure to match non-parallel alignment directions at the two surfaces.
Collapse
Affiliation(s)
- Pierre Nacke
- Institute of Physical Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Rachel Tuffin
- Display Solutions, Merck Electronics KGaA, 64293, Darmstadt, Germany
| | | | - Per Rudquist
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Frank Giesselmann
- Institute of Physical Chemistry, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Cruickshank E. The Emergence of a Polar Nematic Phase: A Chemist's Insight into the Ferroelectric Nematic Phase. Chempluschem 2024; 89:e202300726. [PMID: 38452282 DOI: 10.1002/cplu.202300726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The discovery of a new polar nematic phase; the ferroelectric nematic, has generated a great deal of excitement in the field of liquid crystals. To date there have been around 150 materials reported exhibiting the ferroelectric nematic phase, in general, following three key archetypal structures with these compounds known as RM734, DIO and UUQU-4N. In this review, the relationship between the molecular structure and the stability of the ferroelectric nematic, NF, phase will be described from a chemist's perspective. This will look to highlight the wide variety of functionalities which have been incorporated into these archetypal structures and how these changes influence the transition temperatures of the mesophases present. The NF phase appears to be stabilised particularly by reducing the length of terminal alkyl chains present and adding fluorines laterally along the length of the molecular backbone. This review will look to introduce the background of the ferroelectric nematic phase before then showing the molecular structures of a range of materials which exhibit the phase, describing their structure-property relationships and therefore giving an up-to-date account of the literature for this fascinating new mesophase.
Collapse
Affiliation(s)
- Ewan Cruickshank
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
3
|
Parton-Barr C, Gleeson HF, Mandle RJ. Room-temperature ferroelectric nematic liquid crystal showing a large and diverging density. SOFT MATTER 2024; 20:672-680. [PMID: 38164818 DOI: 10.1039/d3sm01282d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The ferroelectric nematic phase (NF) is a recently discovered phase of matter in which the orientational order of the conventional nematic liquid crystal state is augmented with polar order. Atomistic simulations suggest that the polar NF phase would be denser than conventional nematics owing to contributions from polar order. Using an oscillating U-tube densitometer, we obtain detailed temperature-dependent density values for a selection of conventional liquid crystals with excellent agreement with earlier reports. Having demonstrated the validity of our method, we then record density as a function of temperature for M5, a novel room-temperature ferroelectric nematic material. We present the first experimental density data for a NF material as well as density data for a nematic that has not previously been reported. We find that the room-temperature NF material shows a large (>1.3 g cm-3) density at all temperatures studied, notably including phases without polar order. An increase in density at phase transitions is observed. The magnitude of the increase for the intermediate-to-ferroelectric nematic (NX-NF) transition is an order of magnitude smaller than the isotropic-nematic (I-N) transition. We then probe potential consequences that may result from an elevated density through measurement of the refractive indices (no and ne). The navg of M5 is compared with 5CB and polar smectic liquid crystals. We observe how the highly polar nature of the system counteracts the effects of an increase in density. With knowledge of experimental density, we are able to derive an approximation that yields the polar order parameter, 〈P1〉, from polarisation measurements. Present results may be typical of ferroelectric nematic materials, potentially guiding material development, and is especially relevant for informing ongoing studies into this emerging class of materials.
Collapse
Affiliation(s)
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard J Mandle
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Emelyanenko AV, Rudyak VY, Shvetsov SA, Araoka F, Nishikawa H, Ishikawa K. Transformation of polar nematic phases in the presence of an electric field. Phys Rev E 2024; 109:014701. [PMID: 38366416 DOI: 10.1103/physreve.109.014701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Only a few years have passed since the discovery of polar nematics, and now they are becoming the most actively studied liquid-crystal materials. Despite numerous breakthrough findings made recently, a theoretical systematization is still lacking. In the present paper, we take a step toward systematization. The powerful technique of molecular-statistical physics has been applied to an assembly of polar molecules influenced by electric field. Three polar nematic phases were found to be stable at various conditions: the double-splay ferroelectric nematic N_{F}^{2D} (observed in the lower-temperature range in the absence of or at low electric field), the double-splay antiferroelectric nematic N_{AF} (observed at intermediate temperature in the absence of or at low electric field), and the single-splay ferroelectric nematic N_{F}^{1D} (observed at moderate electric field at any temperature below transition into paraelectric nematic N and in the higher-temperature range (also below N) at low electric field or without it. A paradoxical transition from N_{F}^{1D} to N induced by application of higher electric field has been found and explained. A transformation of the structure of polar nematic phases at the application of electric field has also been investigated by Monte Carlo simulations and experimentally by observation of polarizing optical microscope images. In particular, it has been realized that, at planar anchoring, N_{AF} in the presence of a moderate out-of-plane electric field exhibits twofold splay modulation: antiferroelectric in the plane of the substrate and ferroelectric in the plane normal to the substrate. Several additional subtransitions related to fitting the confined geometry of the cell by the structure of polar phases were detected.
Collapse
Affiliation(s)
| | - V Yu Rudyak
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - S A Shvetsov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - F Araoka
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - H Nishikawa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - K Ishikawa
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Karcz J, Rychłowicz N, Czarnecka M, Kocot A, Herman J, Kula P. Enantiotropic ferroelectric nematic phase in a single compound. Chem Commun (Camb) 2023. [PMID: 37937977 DOI: 10.1039/d3cc04296k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ferroelectric nematic phase became the centre of interest of scientists because of its unique physical properties. The uniqueness of this particular phase results in its monotropic character in all known NF materials. Here we present the very first example of a compound with an enantiotropic ferroelectric nematic phase. Compound 3JK is complementary with already well known NF materials, i.e. RM734 and DIO and is characterized by moderately high dielectric anisotropy.
Collapse
Affiliation(s)
- Jakub Karcz
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Natan Rychłowicz
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Małgorzata Czarnecka
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
| | - Antoni Kocot
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, ul. 75 Pułku Piechoty, 41-500 Chorzów, Poland
| | - Jakub Herman
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Przemysław Kula
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
| |
Collapse
|
6
|
Cruickshank E, Rybak P, Majewska MM, Ramsay S, Wang C, Zhu C, Walker R, Storey JMD, Imrie CT, Gorecka E, Pociecha D. To Be or Not To Be Polar: The Ferroelectric and Antiferroelectric Nematic Phases. ACS OMEGA 2023; 8:36562-36568. [PMID: 37810647 PMCID: PMC10552116 DOI: 10.1021/acsomega.3c05884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.
Collapse
Affiliation(s)
- Ewan Cruickshank
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Paulina Rybak
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Magdalena M. Majewska
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Shona Ramsay
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Cheng Wang
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Rebecca Walker
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - John M. D. Storey
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Corrie T. Imrie
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Ewa Gorecka
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Szydlowska J, Majewski P, Čepič M, Vaupotič N, Rybak P, Imrie CT, Walker R, Cruickshank E, Storey JMD, Damian P, Gorecka E. Ferroelectric Nematic-Isotropic Liquid Critical End Point. PHYSICAL REVIEW LETTERS 2023; 130:216802. [PMID: 37295101 DOI: 10.1103/physrevlett.130.216802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
A critical end point above which an isotropic phase continuously evolves into a polar (ferroelectric) nematic phase with an increasing electric field is found in a ferroelectric nematic liquid crystalline material. The critical end point is approximately 30 K above the zero-field transition temperature from the isotropic to nematic phase and at an electric field of the order of 10 V/μm. Such systems are interesting from the application point of view because a strong birefringence can be induced in a broad temperature range in an optically isotropic phase.
Collapse
Affiliation(s)
- Jadwiga Szydlowska
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Pawel Majewski
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Mojca Čepič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Physics and Technical Studies, Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia
| | - Nataša Vaupotič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
| | - Paulina Rybak
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Corrie T Imrie
- Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, United Kingdom
| | - Rebecca Walker
- Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, United Kingdom
| | - Ewan Cruickshank
- Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, United Kingdom
| | - John M D Storey
- Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, United Kingdom
| | - Pociecha Damian
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Gorecka
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Tufaha N, Cruickshank E, Pociecha D, Gorecka E, Storey JM, Imrie CT. Molecular Shape, Electronic Factors, and the Ferroelectric Nematic Phase: Investigating the Impact of Structural Modifications. Chemistry 2023; 29:e202300073. [PMID: 36807424 PMCID: PMC10962687 DOI: 10.1002/chem.202300073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The synthesis and characterisation of two series of low molar mass mesogens, the (4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3.m) and the (3-fluoro-4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3F.m), are reported in order to investigate the effect of changing the position of a lateral alkoxy chain from the methoxy-substituted terminal ring to the central phenyl ring in these two series of materials based on RM734. All members of the NT3.m series exhibited a conventional nematic phase, N, which preceded the ferroelectric nematic phase, NF , whereas all the members of the NT3F.m series exhibited direct NF -I transitions except for NT3F.1 which also exhibited an N phase. These materials cannot be described as wedge-shaped, yet their values of the ferroelectric nematic-nematic transition temperature, TN F N ${{_{{\rm N}{_{{\rm F}}}{\rm N}}}}$ , exceed those of the corresponding materials with the lateral alkoxy chain located on the methoxy-substituted terminal ring. In part, this may be attributed to the effect that changing the position of the lateral alkoxy chain has on the electronic properties of these materials, specifically on the electron density associated with the methoxy-substituted terminal aromatic ring. The value of TNI decreased with the addition of a fluorine atom ortho to the nitro group in NT3F.1, however, the opposite behaviour was found when the transition temperatures of the NF phase were compared which are higher for the NT3F.m series. This may reflect a change in the polarity and polarizability of the NT3F.m series compared to the NT3.m series. Therefore, it is suggested that, rather than simply promoting a tapered shape, the role of the lateral chain in inhibiting anti-parallel associations and its effect on the electronic properties of the molecules are the key factors in driving the formation of the NF phase.
Collapse
Affiliation(s)
- Naila Tufaha
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Ewan Cruickshank
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Damian Pociecha
- Faculty of ChemistryUniversity of Warsawul. Zwirki i Wigury 10102-089WarsawPoland
| | - Ewa Gorecka
- Faculty of ChemistryUniversity of Warsawul. Zwirki i Wigury 10102-089WarsawPoland
| | - John M.D. Storey
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Corrie T. Imrie
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| |
Collapse
|