1
|
Wang Y, Mao Z, Hu X, Cao J, Gwak J, Lee J, Chen H. Nanopore Confinement Effect Mediated Heterogeneous Plasmonic Metasurfaces for Multifunctional Biosensing Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408705. [PMID: 39707664 DOI: 10.1002/smll.202408705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Plasmonic metasurfaces (PMs) exhibit extraordinary optical response due to surface lattice resonance, which is crucial for realizing high-performance photovoltaic device preparation. In this work, a nanopore confinement effect-mediated MOF@UsAu is proposed as a novel PM heterojunction for photovoltaic interfaces. 2D MOFs have the unique advantage of a tunable and ordered porous structure. Its nanopore confinement effect regulates in situ synthesis of AuNPs on the MOF surface in dimensions and regions. The interface delocalization induced by work function matching and the Schottky barrier formed by band bending enhance the ordered LSPR and photovoltaic response of PM heterojunctions, achieving a significant enhancement of SPR interface plasma electric field. Based on the bi-directional interaction design between the S-shaped multifunctional peptide and MOF@UsAu, a PMs-enhanced SPR biosensor is constructed for direct, real-time, and ultrasensitive analysis of tumor exosomes. This study is the first to use 2D MOFs as substrates for constructing PMs and designing customized in situ synthesis strategies for specific application scenarios. It provides new ideas for the design of novel PMs and the construction of customized photovoltaic interfaces, expected to be extended to various types of photovoltaic device applications.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Zhihui Mao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200444, P.R. China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jiarong Cao
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Juyong Gwak
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, P.R. China
| |
Collapse
|
2
|
Su P, Song F, Cao J, Yan CH, Tang Y. Rare Earth Complex-Based Functional Materials: From Molecular Design and Performance Regulation to Unique Applications. Acc Chem Res 2025; 58:218-230. [PMID: 39748142 DOI: 10.1021/acs.accounts.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands. Through the "antenna effect", organic ligands can transfer energy to RE ions, enhancing their luminescence efficiency. Moreover, the modification of the ligands can influence the local environment of the RE ions, thereby regulating their electronic structures and energy-level distributions. This makes it one of the important avenues for the efficient development and utilization of RE resources.The meticulous design of organic ligands during molecular synthesis enables the precise construction and regulation of RE complex structures, which are essential for probing molecular-level structure-performance relations and developing functional materials in fields such as optoelectronics, sensing, and catalysis/energy. Despite notable advancements, challenges persist in refining synthesis methodologies, innovating RE complex-based materials, enhancing stability, gaining better control over device functionality, and realizing high-value applications. This Account summarizes the recent advancements in molecular design and performance regulation achieved by our research group, particularly focusing on the synthesis and functional regulation of RE complex-based materials. We have employed strategies such as coordination self-assembly, in situ coordination, and microstructural evolution to achieve the precise synthesis and functional modulation of RE complex-based materials. These approaches have allowed us to finely tune properties such as the luminescence, electrical performance, and catalytic performance of various material systems. Consequently, we have made considerable strides in multidimensional optical information storage, the development of intelligent biological probes, the preparation of nanocatalysts, and the enhancement of inorganic-organic hybrid perovskite solar cell devices. Finally, we are committed to conducting an in-depth analysis of the challenges and opportunities that arise from the precise synthesis methods, performance regulation strategies, and innovative applications of RE complex-based functional materials. Additionally, we aim to propose potential solutions to current issues. This Account comprehensively summarizes the developments in RE complex-based materials to stimulate innovative thinking and new research directions and to establish a foundation for function-oriented precise synthesis methods.
Collapse
Affiliation(s)
- Pingru Su
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fujia Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|
3
|
Yang J, Shen Y, Xian J, Xiang R, Li G. Rare-earth element doped NiFe-MOFs as efficient and robust bifunctional electrocatalysts for both alkaline freshwater and seawater splitting. Chem Sci 2025; 16:685-692. [PMID: 39634583 PMCID: PMC11612640 DOI: 10.1039/d4sc06574c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Based on the target of carbon neutrality, it is very important to explore highly active and durable electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a series of NiFe-based metal-organic frameworks (MOFs) with the doping of various rare-earth elements (Ce, Y, and La) were in situ grown on nickel foam by a facile solvothermal process. The representative CeNiFe-MOF showed amazing OER performance with ultralow overpotentials of 224 and 277 mV at 500 mA cm-2 in 1.0 M KOH and 1.0 M KOH + seawater, respectively. Moreover, it also exhibited favorable activity and durability for both alkaline freshwater and seawater splitting. Theoretical calculations unveiled that Ce doping effectively optimized the adsorption energy of H* and reduced the energy barrier from *OH to *O, thus leading to significant promotion of HER and OER performance. This work provided new inspiration for the electron modulation and activity optimization of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming 525000 China
| | - Yong Shen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Runan Xiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
4
|
Dong J, Boukhvalov DW, Lv C, Humphrey MG, Zhang C, Huang Z. Enhancing Oxygen Evolution Reaction Performance of Metal-Organic Frameworks through Cathode Activation. CHEMSUSCHEM 2024; 17:e202401176. [PMID: 38967038 DOI: 10.1002/cssc.202401176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Due to their abundant active sites and porous structures, metal-organic frameworks (MOFs) have garnered significant interest as oxygen evolution reaction (OER) electrocatalysts. Nevertheless, the development of MOF s-based electrocatalysts with efficient OER activity and excellent stability simultaneously still face challenges. Herein, a cathodic activation strategy was used to enhance the OER electrocatalytic performance of M-HHTP for the first time, where M refers to Ni, Cu, Co, Fe, while HHTP denotes 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene. As a prototype, the activated Ni-HHTP (HA-Ni-HHTP) demonstrates outstanding OER performance, with an overpotential as low as 140 mV at 20 mA cm-2 and a small Tafel slope of 78.7 mV-1, surpassing commercial RuO2 and rivaling state-of-the-art MOFs-based electrocatalysts. Characterizations and density functional theory calculations reveal that the superior performance of HA-Ni-HHTP is primarily ascribed to changes in semiconductor type, contact angle, and oxygen vacancy content induced by cathodic activation. Electrochemical impedance spectroscopy analysis using the transmission line model confirms that cathodic activation accelerates charge transport, enhancing the OER process. Furthermore, the cathodic activation strategy holds promise for improving the water oxidation performance of other MOFs such as Fe-HHTP, Co-HHTP, and Cu-HHTP.
Collapse
Affiliation(s)
- Jie Dong
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering Institution, Tongji University, Shanghai, 200092, China
| | - Danil W Boukhvalov
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia
| | - Cuncai Lv
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering Institution, Tongji University, Shanghai, 200092, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering Institution, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Fu W, Yu Y, Yin K, Li Z, Tang M, Tian J, Wei G, Zhou S, Sun Y, Dai Y. Engineering Asymmetric Strain within C-Shaped CeO 2 Nanofibers for Stabilizing Sub-3 nm Pt Clusters against Sintering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47513-47523. [PMID: 39136725 DOI: 10.1021/acsami.4c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizing sub-3 nm Pt clusters. Through precisely manipulating the asymmetry of obtained nanofibers, uneven strain was induced within C-shaped CeO2 nanofibers with tensile strain at the outer side and compressive strain at the inner side. As a result, the enriched oxygen vacancies significantly improved adhesion of Pt to CeO2, thereby boosting the sinter-resistance of ultraclose sub-3 nm Pt clusters. Notably, no aggregation was observed even after exposure to humid air at 750 °C for 12 h, which is far beyond their Tammann temperature (sintering onset temperature, below 250 °C). In situ HAADF-STEM observation revealed a unique sintering mechanism, wherein Pt clusters initially migrate toward the grain boundaries with concentrated stain and undergo slight coalescence, followed by subsequent Ostwald ripening at higher temperatures. Moreover, the sinter-resistant Pt/C-shaped CeO2 effectively catalyzed soot combustion (over 700 °C) in a durable manner. This work provides a new insight for developing sinter-resistant catalysts from the perspective of strain engineering within nano-oxides.
Collapse
Affiliation(s)
- Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, P. R. China
| | - Zhihui Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jilan Tian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Guanzhao Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shiming Zhou
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
6
|
Li J, Yin C, Wang S, Zhang B, Feng L. Built-in electrophilic/nucleophilic domain of nitrogen-doped carbon nanofiber-confined Ni 2P/Ni 3N nanoparticles for efficient urea-containing water-splitting reactions. Chem Sci 2024; 15:13659-13667. [PMID: 39211499 PMCID: PMC11351610 DOI: 10.1039/d4sc01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transferring urea-containing waste water to clean hydrogen energy has received increasing attention, while challenges are still faced in the sluggish catalytic kinetics of urea oxidation. Herein, a novel hybrid catalyst of Ni2P/Ni3N embedded in nitrogen-doped carbon nanofiber (Ni2P/Ni3N/NCNF) is developed for energy-relevant urea-containing water-splitting reactions. The built-in electrophilic/nucleophilic domain resulting from the electron transfer from Ni2P to Ni3N accelerates the formation of high-valent active Ni species and promotes favourable urea molecule adsorption. A spectral study and theoretical analysis reveal that the negatively shifted Ni d-band centre in Ni2P/Ni3N/NCNF weakens the adsorption of intermediate CO2 and facilitates its desorption, thereby improving the urea oxidation reaction kinetics. The overall reaction process is also optimized by minimizing the energy barrier of the rate-determining step. Following the stability test, the surface reconstruction of the pre-catalyst is discussed, where an amorphous layer of NiOOH as the real active phase is formed on the surface/interface of Ni2P/Ni3N for urea oxidation. Benefiting from these characteristics, a high current density of 151.11 mA cm-2 at 1.54 V vs. RHE is obtained for urea oxidation catalysed by Ni2P/Ni3N/NCNF, exceeding that of most of the similar catalysts. A low cell voltage of 1.39 V is required to reach 10 mA cm-2 for urea electrolysis, which is about 200 mV less than that of the general water electrolysis. The current work will be helpful for the development of advanced catalysts and their application in the urea-containing waste water transfer to clean hydrogen energy.
Collapse
Affiliation(s)
- Jiaxin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Chun Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Ligang Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
7
|
Wang Y, Xu C, Zhou Y, Lee J, Chen Q, Chen H. Interface-Engineered 2D Heterojunction with Photoelectric Dual Gain: Mxene@MOF-Enhanced SPR Spectroscopy for Direct Sensing of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308897. [PMID: 38150665 DOI: 10.1002/smll.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Indexed: 12/29/2023]
Abstract
MXene is widely used in the construction of optoelectronic interfaces due to its excellent properties. However, the hydrophilicity and metastable surface of MXene lead to its oxidation behavior, resulting in the degradation of its various properties, which seriously limits its practical application. In this work, a 2D metal-organic framework (2D MOF) with matching 2D morphology, excellent stability performance, and outstanding optoelectronic performance is grown in situ on the MXene surface through heterojunction engineering to suppress the direct contact between reactive molecules and the inner layer material without affecting the original advantages of MXene. The photoelectric dual gain MXene@MOF heterojunction is confirmed. As a photoelectric material, its properties are highly suitable for the demand of interface sensitization layer materials of surface plasmon resonance (SPR). Therefore, using SPR as a platform for the application of this interface material, the performance of MXene@MOF and its potential mechanism to enhance SPR are analyzed in depth using experiments combined with simulation calculations (FDTD/DFT). Finally, the MXene@MOF/peptides-SPR sensor is constructed for rapid and sensitive detection of the cancer marker exosomes to explore its potential in practical applications. This work offers a forward-looking strategy for the design of interface materials with excellent photoelectric performance.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengcheng Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jaebeom Lee
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Mao K, Zhang W, Jiang J, Dai J, Zeng XC. Graphene/Hexagonal Boron Nitride Heterostructures for O 2 Activation and CO Oxidation: Metal-Free Catalysts by Design. J Phys Chem Lett 2024; 15:785-793. [PMID: 38231474 DOI: 10.1021/acs.jpclett.3c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Pristine graphene and h-BN monolayers are chemically inert to oxygen and thus exhibit very limited catalytic activity toward O2 activation. Herein, we show that graphene/h-BN heterostructures exhibit a surprising O2 activation capability. We theoretically designed ten graphene/h-BN heterostructures with three types of interfaces and investigated their catalytic activities toward O2 activation and CO-oxidation. In general, O2 can be molecularly chemisorbed and activated on electron-rich graphene/h-BN heterostructures. Electron-deficient graphene/h-BN heterostructures can lead to dissociative O2 adsorption with relatively low dissociation energy barriers (<0.4 eV). For CO-oxidation, the computed energy barrier can be as low as 0.67 eV. The high catalytic activities toward O2 stem from either electron-deficient heterostructures' accumulated electrons or electron richness and low work function for the electron-rich heterostructures. Although the catalytic activities of graphene/h-BN heterostructures depend strongly on the interface type, they are insensitive to the patterns of BN-substitutes, hence benefiting applicability of a wide range of heterostructures.
Collapse
Affiliation(s)
- Keke Mao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Wei Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jian Jiang
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jun Dai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
9
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
10
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
11
|
He Q, Bai J, Wang H, Liu S, Jun SC, Yamauchi Y, Chen L. Emerging Pristine MOF-Based Heterostructured Nanoarchitectures: Advances in Structure Evolution, Controlled Synthesis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303884. [PMID: 37625077 DOI: 10.1002/smll.202303884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
12
|
Xu L, Lin Z, Xiong X, Cheng H, Kang Z, Wang Y, Wu Z, Ma W, Yang N, He Y, Zou Z, Liu M, Li J, Kou X, Zhao Y. Surface Enhancement Effects of Tiny SnO 2 Nanoparticle Modification on α-Fe 2O 3 for Room-Temperature NH 3 Sensing. Inorg Chem 2023; 62:13649-13661. [PMID: 37599581 DOI: 10.1021/acs.inorgchem.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development of a gas sensor capable of detecting ammonia with high selectivity and rapid response at room temperature has consistently posed a formidable challenge. To address this issue, the present study utilized a one-step solvothermal method to co-assemble α-Fe2O3 and SnO2 by evenly covering SnO2 nanoparticles on the surface of α-Fe2O3. By controlling the morphology and Fe/Sn mole ratio of the composite, the as-prepared sample exhibits high-performance detection of NH3. At room temperature conditions, a gas sensor composed of α-Fe2O3@3%SnO2 demonstrates a rapid response time of 14 s and a notable sensitivity of 83.9% when detecting 100 ppm ammonia. Experiments and density functional theory (DFT) calculations suggest that the adsorption capacity of α-Fe2O3 to ammonia is enhanced by the surface effect provided by SnO2. Meanwhile, the existence of SnO2 tailors the pore structure and effective surface area of α-Fe2O3, creating multiple channels for the diffusion and adsorption of ammonia molecules. Additionally, an N-N heterostructure is formed between α-Fe2O3 and SnO2, which enhances the potential energy barrier and improves the ammonia sensing performance. Demonstration experiments have proved that the sensor shows significant advantages over commercial sensors in the process of ammonia detection in agricultural facilities. This work provides new insights into the perspectives on ammonia detection at room temperature.
Collapse
Affiliation(s)
- Lijia Xu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhicheng Lin
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - XingYao Xiong
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Huan Cheng
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - ZhiLiang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuchao Wang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212003, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Zou
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingdan Liu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xin Kou
- College of Resources, Sichuan Agricultural University, Chengdu 625014, China
| | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
13
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
14
|
Xiao XY, Song ZY, Zhang CC, Zhao YH, Gao ZW, Chen SH, Li PH, Sun YF, Yang M, Huang XJ. Interface catalytic regulation via electron rearrangement and hydroxyl radicals triggered by oxygen vacancies and heavy metal ions. Chem Sci 2023; 14:2960-2970. [PMID: 36937602 PMCID: PMC10016426 DOI: 10.1039/d2sc06762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 02/19/2023] Open
Abstract
Although the enhanced intrinsic activities of some nano-metal oxides are obtained by manufacturing oxygen vacancies (OVs), the effect of multiple roles of OVs is ambiguous. Herein, an interface catalytic regulation via electron rearrangement and hydroxyl radicals (˙OH) was proposed with the designed ZrO2 hollow sphere rich in OVs (Vo-rich ZrO2). Surprisingly, it was shown that the catalytic ability of Vo-rich ZrO2 was 9.9 times higher than that of ZrO2 with little OVs in electrochemical catalytic reduction of Pb(ii). It was found that the generation of Zr2+ and Zr3+ caused by OVs results in the rearrangement of abundant free electrons to facilitate the catalytic reaction rates. The longer bond length between Vo-rich ZrO2 and reactants, and the lower adsorption energy are beneficial for reactants to desorb, improving the conversion rates. Besides, the produced ˙OH were captured which were induced by OVs and trace divalent heavy metal ions in in situ electron paramagnetic resonance (EPR) experiments, contributing to lowering the energy barriers. This study not only revealed the enhanced interface catalytic effect of electron rearrangement and generated ˙OH triggered by OVs, but also provided unique insights into interface catalytic regulation on nano-metal oxides simulated by OVs.
Collapse
Affiliation(s)
- Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| | - Chong-Chong Zhang
- College of Mechanical and Automotive Engineering, Anhui Polytechnic University Wuhu Anhui 241000 PR China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Yu-Feng Sun
- College of Mechanical and Automotive Engineering, Anhui Polytechnic University Wuhu Anhui 241000 PR China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
15
|
Liu D, Zhao Z, Xu Z, Li L, Lin S. Anchoring Ce-modified Ni(OH) 2 nanoparticles on Ni-MOF nanosheets to enhances the oxygen evolution performance. Dalton Trans 2022; 51:12839-12847. [PMID: 35960017 DOI: 10.1039/d2dt02182j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing a heterostructure is an efficient strategy to enhance the catalytic activity toward the oxygen evolution reaction (OER). Herein, Ce-modified Ni(OH)2 nanoparticles are anchored on Ni-MOF nanosheets by the electrodeposition strategy, forming a self-supporting electrode of Ce-m-Ni(OH)2@Ni-MOF. The Raman spectrum proves that both Ce(OH)3 and Ce doping exist in Ce-modified Ni(OH)2 nanoparticles. The heterostructure possesses an open nanosheet structure, with a good interaction between Ni-MOF and Ce-m-Ni(OH)2, which enables efficient mass/charge transfer and the synergetic effect between Ni and Ce, leading to a high-performance electrocatalyst. Specifically, Ce-m-Ni(OH)2@Ni-MOF achieves current densities of 50 and 100 mA cm-2 at low overpotentials of 219 and 272 mV, respectively, and retains high activity for at least 30 h.
Collapse
Affiliation(s)
- Dongying Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China. .,School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Zhifeng Zhao
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Zhikun Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China. .,School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Shuangyan Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China. .,School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| |
Collapse
|
16
|
Miao WN, Liu B, Li H, Zheng SJ, Jiao H, Xu L. Fluorescent Eu 3+/Tb 3+ Metal-Organic Frameworks for Ratiometric Temperature Sensing Regulated by Ligand Energy. Inorg Chem 2022; 61:14322-14332. [PMID: 36026489 DOI: 10.1021/acs.inorgchem.2c02025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents three series of Eu/Tb metal-organic frameworks (MOFs) containing benzophenone-4,4'-dicarboxylic acid (H2BPNDC), 4,4'-dicarboxydiphenyl ether (H2OBA), and terephthalic acid (H2BDC) as the ligands. Eu/Tb MOFs have the same structural features in that their 3D frameworks are simplified as 2,3,10-connected {42.6}2{46.618.819.102}{4}2 topological networks. The solid-state fluorescence spectra of three Eu/Tb MOF series are attributed to the combined emissions of 5D0 → 7FJ (J = 1-4) transitions in Eu3+ and 5D4 → 7FJ (J = 6-5) transitions in Tb3+. The nEu:nTb of Eu/Tb MOFs is optimized as 1:69 based on the relationships between ITb(545)/IEu(614) and nEu:nTb; that is, Eu0.0143Tb0.9857-L (L = BPNDC2-, OBA2-, and BDC2-) were selected to carry out the following temperature (T)-sensing tests. The fluorescence mechanism of Eu0.0143Tb0.9857-L can be explained by a ligand-to-metal charge transfer combined with an intermetallic Tb3+ → Eu3+ energy transfer. The T-dependent fluorescence indicates linear relationships with sensitivities of 1.85% K-1 for Eu0.0143Tb0.9857-BPNDC, 6.49% K-1 for Eu0.0143Tb0.9857-OBA, and 0.28% K-1 for Eu0.0143Tb0.9857-BDC. The influence of T on the lowest excited triplet energy levels (T1 values) of the ligands reveals that the ligand energy regulation impacts their fluorescence properties, including the sensitivity, fluorescence quenching rate, quantum yield, and fluorescence lifetime. This shows that Eu0.0143Tb0.9857-BPNDC is sufficiently sensitive to T, making it applicable in noncontact T measurements.
Collapse
Affiliation(s)
- Wei-Ni Miao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China
| | - Bing Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi Province, P. R. China
| | - Hong Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China
| | - Shu-Jin Zheng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China
| | | | - Ling Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China
| |
Collapse
|
17
|
Zhang ZC, Zhang T, Su CY, Lun MM, Zhang Y, Fu DW, Wu Q. Competitive Dual-Emission-Induced Thermochromic Luminescence in Organic-Metal Halides. Inorg Chem 2022; 61:13322-13329. [PMID: 35976811 DOI: 10.1021/acs.inorgchem.2c01182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lead-free Halides, especially Mn-based ones, are preferred as hotspots in the exploration of photoluminescent materials. However, there are few reports on sensitive reversible thermochromism and switchable dual emission originating from self-trapped exciton emission in pure Mn-Based materials. Here, we report a new Mn-based hybrid material [TMPA]2MnI4 (TMPA = trimethylphenylammonium), which shows two emission peaks at 545 and 660 nm benefitting from the d-d orbital transition of Mn2+ and the generation of self-trapped excitons, respectively. Due to the different sensitivity to temperature, the stages of thermal activation and thermal quenching of the two emission types are also inconsistent, showing a certain competition relationship and dominating the emission colors in different temperature ranges, resulting in adjustable green-orange-green thermochromic luminescence from 100 to 403 K (both high and low temperatures correspond to green, and orange is displayed at near room temperature). Therefore, thermochromic luminescence can be easily achieved by controlling the temperature under the guidance of excited states. This work provides new insights into the synthesis and application of thermochromic materials. Therefore, it is certain that regulating temperature while being guided by excited states will achieve thermochromic luminescence. This research offers fresh perspectives on the development and potential of thermochromic materials.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| |
Collapse
|
18
|
Pang X, Zhao H, Huang Y, Liu Y, Bai H, Fan W, Shi W. In Situ Electrochemical Reconstitution of CF-CuO/CeO 2 for Efficient Active Species Generation. Inorg Chem 2022; 61:8940-8954. [PMID: 35653625 DOI: 10.1021/acs.inorgchem.2c01338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Achievement of the intrinsic activity by in situ electrochemical reconstruction has been becoming a great challenge for designing a catalyst. Herein, an effective electrochemical strategy is proposed to reconstruct the surface of the CF-CuO/CeO2 precursor. Under the stimulation of oxidative/reductive potential, abundant active sites were successfully generated on the surface of CF-CuO/CeO2. Remarkably, the implantation of oxygen vacancy-rich CeO2 synergistically optimizes the chemical composition and electronic structure of CF-CuO/CeO2, greatly promoting the generation of active species. Systematic electrochemical experiments indicate that the superior catalytic performance of reconstructed CF-CuO/CeO2 could be attributed to CuOOH/CeO2 and Cu2O/Ce2O3 active species, respectively. The oxidative-/reductive-activated CF-CuO/CeO2 was further employed in a paired cell for the synergistic catalysis of hydroxymethylfurfural oxidation with 4-nitrophenol hydrogenation. As a result, nearly 100% Faraday efficiency for furandicarboxylic acid/4-aminophenol production was achieved in the paired system (-0.9 V vs Ag/AgCl, 1.5 h). Therefore, the electrochemical reconstruction via oxidative/reductive activation has been confirmed as a feasible approach to significantly excite the intrinsic activity of a catalyst.
Collapse
Affiliation(s)
- Xuliang Pang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaiquan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yifei Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Youchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
19
|
Zhang Z, Li Y, Zhang Z, Zheng H, Liu Y, Yan Y, Li C, Lu H, Shi Z, Feng S. An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting. Chem Sci 2022; 13:8876-8884. [PMID: 35975144 PMCID: PMC9350615 DOI: 10.1039/d2sc02845j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on nickel foam (NFFeCuPt) was fabricated with an extremely low Pt load (∼28 μg cm−2) using one-step electrochemical co-deposition modification, and it serves as a bifunctional catalyst for overall water splitting and achieves 100 mA cm−2 current density at a low cell voltage of 1.54 V in acidic solution and 1.63 V in alkaline solution, respectively. In addition, a novel electrolyte was developed to stabilize the catalyst under acidic conditions, which provides inspiration for the development of highly efficient, highly stable, and cost-effective ways to synthesize electrocatalysts. Multiple metal elements immobilized into a carbon matrix to fabricate an ultra-stable water splitting electrocatalyst by one-step electrochemical modification.![]()
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiduo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - He Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuxing Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|