1
|
Patra S, Sharma B, George SJ. Programmable Coacervate Droplets via Reaction-Coupled Liquid-Liquid Phase Separation (LLPS) and Competitive Inhibition. J Am Chem Soc 2025; 147:16027-16037. [PMID: 40112030 DOI: 10.1021/jacs.4c17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Membraneless biomolecular condensates formed by liquid-liquid phase separation (LLPS) are crucial for many spatiotemporal biological functions. Designing synthetic mimics to emulate and understand LLPS is an active area of research, which has led to the development of coacervate droplets through elegant bioinspired designs. However, recent interest in this field has shifted toward designing programmable coacervates to impart spatiotemporal control over these liquid phases. Herein, we demonstrate the programming of LLPS in synthetic systems by employing concepts of competitive binding and reaction-coupled assembly involving dynamic covalent bonds. Our results utilize small building blocks that follow a simple coacervation mechanism, distinguishing this approach from previously reported programmable complex coacervates, which often rely on reaction-controlled generation of one of the components. We introduce these concepts using dynamic covalent bonds (boronate esters) and small chromophoric building blocks appended with terminal boronic acid groups. Upon reaction with substrates (monosaccharides), these building blocks form molecular structures resembling "sticker-and-spacer" designs for coacervation, leading to a reaction-driven, temporally controlled LLPS process. The differential reactivity of various monosaccharides, combined with the reversibility of dynamic bonds, enables competitive binding-driven control over the growth, inhibition, and dissolution of the coacervation process, offering new strategies for programmable LLPS that are reminiscent of protein-induced inhibition in biomolecular condensates. Detailed spectroscopic probing and kinetic analyses provide mechanistic insights into the reaction-coupled and autocatalytic growth processes, revealing the glucose-selective nature of this coacervation system. Finally, coupling dynamic covalent reactions with temporal pH modulation results in transient coacervation, which can be visualized by using confocal microscopy. We anticipate that this approach will pave the way for designing coacervate droplets with novel biorelevant emergent properties.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Bhawna Sharma
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Patra S, Chandrabhas S, George SJ. Bioinspired programmable coacervate droplets and self-assembled fibers through pH regulation of monomers. J Mater Chem B 2025; 13:604-609. [PMID: 39585665 DOI: 10.1039/d4tb01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Phase separation and phase transitions pervade the biological domain, where proteins and RNA engage in liquid-liquid phase separation (LLPS), forming liquid-like membraneless organelles. The misregulation or dysfunction of these proteins culminates in the formation of solid aggregates via a liquid-to-solid transition, leading to pathogenic conditions. To decipher the underlying mechanisms, synthetic LLPS has been examined through complex coacervate formation from charged polymers. Nonetheless, temporal control over phase transitions from prebiotically relevant small organic synthons remains largely unexplored. Herein, we propose utilizing pH modulation to regulate the charge of small molecular building blocks, thereby controlling the LLPS process. Through a bio-inspired, enzyme-mediated pH-regulated reaction, we introduce temporal control over both LLPS and the transition from coacervates to supramolecular polymers. Additionally, by incorporating antagonistic pH modulators, we achieve transient LLPS and further temporal regulation of supramolecular polymer disassembly. Our investigation into pH-regulated LLPS provides a new avenue for exploring the stimuli-responsive, dynamic, and transient nature of LLPS.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | - Sushmitha Chandrabhas
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| |
Collapse
|
3
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
4
|
Patra S, Chandrabhas S, Dhiman S, George SJ. Controlled Supramolecular Polymerization via Bioinspired, Liquid-Liquid Phase Separation of Monomers. J Am Chem Soc 2024; 146:12577-12586. [PMID: 38683934 DOI: 10.1021/jacs.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Dynamic supramolecular assemblies, driven by noncovalent interactions, pervade the biological realm. In the synthetic domain, their counterparts, supramolecular polymers, endowed with remarkable self-repair and adaptive traits, are often realized through bioinspired designs. Recently, controlled supramolecular polymerization strategies have emerged, drawing inspiration from protein self-assembly. A burgeoning area of research involves mimicking the liquid-liquid phase separation (LLPS) observed in proteins to create coacervate droplets and recognizing their significance in cellular organization and diverse functions. Herein, we introduce a novel perspective on synthetic coacervates, extending beyond their established role in synthetic biology as dynamic, membraneless phases to enable structural control in synthetic supramolecular polymers. Drawing parallels with the cooperative growth of amyloid fibrils through LLPS, we present metastable coacervate droplets as dormant monomer phases for controlled supramolecular polymerization. This is achieved via a π-conjugated monomer design that combines structural characteristics for both coacervation through its terminal ionic groups and one-dimensional growth via a π-conjugated core. This design leads to a unique temporal LLPS, resulting in a metastable coacervate phase, which subsequently undergoes one-dimensional growth via nucleation within the droplets. In-depth spectroscopic and microscopic characterization provides insights into the temporal evolution of disordered and ordered phases. Furthermore, to modulate the kinetics of liquid-to-solid transformation and to achieve precise control over the structural characteristics of the resulting supramolecular polymers, we invoke seeding in the droplets, showcasing living growth characteristics. Our work thus opens up new avenues in the exciting field of supramolecular polymerization, offering general design principles and controlled synthesis of precision self-assembled structures in confined environments.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sushmitha Chandrabhas
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
5
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
6
|
Hazra B, Mandal R, Sahu J, Das S, Prasad M, Tarafdar PK. Self-immolation Assisted Morphology Transformation of Prebiotic Lipidated-cationic Amino Acids: Electro-droplet Mediated C-C Coupling Reaction to Synthesize Macromolecules. Chemistry 2024; 30:e202303555. [PMID: 38205907 DOI: 10.1002/chem.202303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Jayati Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
7
|
Späth F, Maier AS, Stasi M, Bergmann AM, Halama K, Wenisch M, Rieger B, Boekhoven J. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets. Angew Chem Int Ed Engl 2023; 62:e202309318. [PMID: 37549224 DOI: 10.1002/anie.202309318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.
Collapse
Affiliation(s)
- Fabian Späth
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anton S Maier
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
8
|
Häfner G, Müller M. Reaction-driven assembly: controlling changes in membrane topology by reaction cycles. SOFT MATTER 2023; 19:7281-7292. [PMID: 37605887 DOI: 10.1039/d3sm00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chemical reaction cycles are prototypical examples how to drive systems out of equilibrium and introduce novel, life-like properties into soft-matter systems. We report simulations of amphiphilic molecules in aqueous solution. The molecule's head group is permanently hydrophilic, whereas the reaction cycle switches the molecule's tail from hydrophilic (precursor) to hydrophobic (amphiphile) and vice versa. The reaction cycle leads to an arrest in coalescence and results in uniform vesicle sizes that can be controlled by the reaction rate. Using a continuum description and particle-based simulation, we study the scaling of the vesicle size with the reaction rate. The chemically active vesicles are inflated by precursor, imparting tension onto the membrane and, for specific parameters, stabilize pores.
Collapse
Affiliation(s)
- Gregor Häfner
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Klemm B, Roshanasan A, Piergentili I, van Esch JH, Eelkema R. Naked-Eye Thiol Analyte Detection via Self-Propagating, Amplified Reaction Cycle. J Am Chem Soc 2023; 145:21222-21230. [PMID: 37748772 PMCID: PMC10557148 DOI: 10.1021/jacs.3c02937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 09/27/2023]
Abstract
We present an approach for detecting thiol analytes through a self-propagating amplification cycle that triggers the macroscopic degradation of a hydrogel scaffold. The amplification system consists of an allylic phosphonium salt that upon reaction with the thiol analyte releases a phosphine, which reduces a disulfide to form two thiols, closing the cycle and ultimately resulting in exponential amplification of the thiol input. When integrated in a disulfide cross-linked hydrogel, the amplification process leads to physical degradation of the hydrogel in response to thiol analytes. We developed a numerical model to predict the behavior of the amplification cycle in response to varying concentrations of thiol triggers and validated it with experimental data. Using this system, we were able to detect multiple thiol analytes, including a small molecule probe, glutathione, DNA, and a protein, at concentrations ranging from 132 to 0.132 μM. In addition, we discovered that the self-propagating amplification cycle could be initiated by force-generated molecular scission, enabling damage-triggered hydrogel destruction.
Collapse
Affiliation(s)
- Benjamin Klemm
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ardeshir Roshanasan
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Irene Piergentili
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan H. van Esch
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft
University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Spitzbarth B, Eelkema R. Chemical reaction networks based on conjugate additions on β'-substituted Michael acceptors. Chem Commun (Camb) 2023; 59:11174-11187. [PMID: 37529876 PMCID: PMC10508045 DOI: 10.1039/d3cc02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Over the last few decades, the study of more complex, chemical systems closer to those found in nature, and the interactions within those systems, has grown immensely. Despite great efforts, the need for new, versatile, and robust chemistry to apply in CRNs remains. In this Feature Article, we give a brief overview over previous developments in the field of systems chemistry and how β'-substituted Michael acceptors (MAs) can be a great addition to the systems chemist's toolbox. We illustrate their versatility by showcasing a range of examples of applying β'-substituted MAs in CRNs, both as chemical signals and as substrates, to open up the path to many applications ranging from responsive materials, to pathway control in CRNs, drug delivery, analyte detection, and beyond.
Collapse
Affiliation(s)
- Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
11
|
Zhao T, Wang Z, Yang Y, Liu K, Wang X. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37402443 DOI: 10.1021/acsami.3c06995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Nonequilibrium assembling systems developed so far have relied on chemical fuels to drive the programmable pH cycles, redox reactions, and metastable bond formations. However, these methods often result in the unwanted accumulation of chemical waste. Herein, we present a novel strategy for achieving cyclic and waste-free nonequilibrium assembly and disassembly of macroscopic hydrogels, utilizing an ionic strength-mediated approach. Our strategy involves using ammonium carbonate as a chemical fuel to temporally regulate the attractions between oppositely charged hydrogels via ionic strength-controlled charge screening and hydrogel elasticity changes. This chemical fuel effectively mediates the assembly/disassembly processes and prevents waste accumulation, as ammonium carbonate can completely decompose into volatile chemical waste. The cyclic and reversible assembly process can be achieved without significant damping due to the self-clearance mechanism, as long as the chemical fuel is repeatedly supplied. This concept holds promise for creating macroscopic and microscopic nonequilibrium systems and self-adaptive materials.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhongrui Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
12
|
Sharko A, Spitzbarth B, Hermans TM, Eelkema R. Redox-Controlled Shunts in a Synthetic Chemical Reaction Cycle. J Am Chem Soc 2023; 145:9672-9678. [PMID: 37092741 PMCID: PMC10161229 DOI: 10.1021/jacs.3c00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants. Furthermore, we introduce a strategy to recycle one of the main products under flow conditions to partially reverse the CRN and control product speciation throughout time. These findings introduce new levels of control over artificial CRNs, driven by redox chemistry, narrowing the gap between synthetic and natural systems.
Collapse
Affiliation(s)
| | - Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas M Hermans
- University of Strasbourg & CNRS, UMR7140, 67083 Strasbourg, France
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
13
|
Cook A, Novosedlik S, van Hest JCM. Complex Coacervate Materials as Artificial Cells. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:287-298. [PMID: 37009061 PMCID: PMC10043873 DOI: 10.1021/accountsmr.2c00239] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Indexed: 05/19/2023]
Abstract
Cells have evolved to be self-sustaining compartmentalized systems that consist of many thousands of biomolecules and metabolites interacting in complex cycles and reaction networks. Numerous subtle intricacies of these self-assembled structures are still largely unknown. The importance of liquid-liquid phase separation (both membraneless and membrane bound) is, however, recognized as playing an important role in achieving biological function that is controlled in time and space. Reconstituting biochemical reactions in vitro has been a success of the last decades, for example, establishment of the minimal set of enzymes and nutrients able to replicate cellular activities like the in vitro transcription translation of genes to proteins. Further than this though, artificial cell research has the aim of combining synthetic materials and nonliving macromolecules into ordered assemblies with the ability to carry out more complex and ambitious cell-like functions. These activities can provide insights into fundamental cell processes in simplified and idealized systems but could also have an applied impact in synthetic biology and biotechnology in the future. To date, strategies for the bottom-up fabrication of micrometer scale life-like artificial cells have included stabilized water-in-oil droplets, giant unilamellar vesicles (GUV's), hydrogels, and complex coacervates. Water-in-oil droplets are a valuable and easy to produce model system for studying cell-like processes; however, the lack of a crowded interior can limit these artificial cells in mimicking life more closely. Similarly membrane stabilized vesicles, such as GUV's, have the additional membrane feature of cells but still lack a macromolecularly crowded cytoplasm. Hydrogel-based artificial cells have a macromolecularly dense interior (although cross-linked) that better mimics cells, in addition to mechanical properties more similar to the viscoelasticity seen in cells but could be seen as being not dynamic in nature and limiting to the diffusion of biomolecules. On the other hand, liquid-liquid phase separated complex coacervates are an ideal platform for artificial cells as they can most accurately mimic the crowded, viscous, highly charged nature of the eukaryotic cytoplasm. Other important key features that researchers in the field target include stabilizing semipermeable membranes, compartmentalization, information transfer/communication, motility, and metabolism/growth. In this Account, we will briefly cover aspects of coacervation theory and then outline key cases of synthetic coacervate materials used as artificial cells (ranging from polypeptides, modified polysaccharides, polyacrylates, and polymethacrylates, and allyl polymers), finishing with envisioned opportunities and potential applications for coacervate artificial cells moving forward.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sebastian Novosedlik
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
Chowdhuri S, Das S, Kushwaha R, Das T, Das BK, Das D. Cumulative Effect of pH and Redox Triggers on Highly Adaptive Transient Coacervates. Chemistry 2023; 29:e202203820. [PMID: 36786201 DOI: 10.1002/chem.202203820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
An intricate synergism between multiple biochemical processes and physical conditions determines the formation and function of various biological self-assemblies. Thus, a complex set of variables dictate the far-from-equilibrium nature of these biological assemblies. Mimicking such systems synthetically is a challenging task. We report multi-stimuli responsive transient coacervation of an aldehyde-appended polymer and a short peptide. The coacervates are formed by the disulphide linkages between the peptide molecules and the imine bond between the polymer and the peptide. Imines are susceptible to pH changes and the disulphide bonds can be tuned by oxidation/reduction processes. Thus, the coacervation is operational only under the combined effect of appropriate pH and oxidative conditions. Taking advantage of these facts, the coacervates are transiently formed under a pH cycle (urea-urease/gluconolactone) and a non-equilibrium redox cycle (TCEP/H2 O2 ). Importantly, the system showed high adaptability toward environmental changes. The transient existence of the coacervates can be generated without any apparent change in size and shape within the same system through the sequential application of the above-mentioned nonequilibrium reaction cycles. Additionally, the coacervation allows for efficient encapsulation/stabilisation of proteins. Thus, the system has the potential to be used for protein/drug delivery purposes in the future.
Collapse
Affiliation(s)
- Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Ritvika Kushwaha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
15
|
Wu B, Lewis RW, Li G, Gao Y, Fan B, Klemm B, Huang J, Wang J, Cohen Stuart MA, Eelkema R. Chemical signal regulated injectable coacervate hydrogels. Chem Sci 2023; 14:1512-1523. [PMID: 36794201 PMCID: PMC9906648 DOI: 10.1039/d2sc06935k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
In the quest for stimuli-responsive materials with specific, controllable functions, coacervate hydrogels have become a promising candidate, featuring sensitive responsiveness to environmental signals enabling control over sol-gel transitions. However, conventional coacervation-based materials are regulated by relatively non-specific signals, such as temperature, pH or salt concentration, which limits their possible applications. In this work, we constructed a coacervate hydrogel with a Michael addition-based chemical reaction network (CRN) as a platform, where the state of coacervate materials can be easily tuned by specific chemical signals. We designed a pyridine-based ABA triblock copolymer, whose quaternization can be regulated by an allyl acetate electrophile and an amine nucleophile, leading to gel construction and collapse in the presence of polyanions. Our coacervate gels showed not only highly tunable stiffness and gelation times, but excellent self-healing ability and injectability with different sized needles, and accelerated degradation resulting from chemical signal-induced coacervation disruption. This work is expected to be a first step in the realization of a new class of signal-responsive injectable materials.
Collapse
Affiliation(s)
- Bohang Wu
- East China University of Science and Technology, Department of Chemical Engineering Meilong Road 130 200237 Shanghai China.,Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Reece W. Lewis
- Delft University of Technology, Department of Chemical EngineeringVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Guotai Li
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Yifan Gao
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Bowen Fan
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Benjamin Klemm
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Jianan Huang
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Junyou Wang
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Martien A. Cohen Stuart
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Rienk Eelkema
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
16
|
Temporally programmed polymer - solvent interactions using a chemical reaction network. Nat Commun 2022; 13:6242. [PMID: 36271045 PMCID: PMC9587023 DOI: 10.1038/s41467-022-33810-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
Out of equilibrium operation of chemical reaction networks (CRNs) enables artificial materials to autonomously respond to their environment by activation and deactivation of intermolecular interactions. Generally, their activation can be driven by various chemical conversions, yet their deactivation to non-interacting building blocks remains largely limited to hydrolysis and internal pH change. To achieve control over deactivation, we present a new, modular CRN that enables reversible formation of positive charges on a tertiary amine substrate, which are removed using nucleophilic signals that control the deactivation kinetics. The modular nature of the CRN enables incorporation in diverse polymer materials, leading to a temporally programmed transition from collapsed and hydrophobic to solvated, hydrophilic polymer chains by controlling polymer-solvent interactions. Depending on the layout of the CRN, we can create stimuli-responsive or autonomously responding materials. This concept will not only offer new opportunities in molecular cargo delivery but also pave the way for next-generation interactive materials.
Collapse
|