1
|
Zhou J, Zhang Y, Zhou J, Min Y, Wang H, Ruan J, Zhang D, Zhou H, Xia B. Nickel-Catalyzed One-Pot H/D Exchange and Asymmetric Michael Addition in the Presence of D 2O. J Org Chem 2025; 90:4525-4536. [PMID: 40126032 DOI: 10.1021/acs.joc.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A step-economical and efficient strategy for the enantioselective synthesis of tetradeuterated γ-nitroketones using a cost-effective and readily available deuterium source is highly desirable. Herein, we report a nickel-catalyzed one-pot H/D exchange and highly enantioselective Michael addition of α,β-unsaturated 2-acyl imidazoles with nitromethane in the presence of D2O. This protocol demonstrates excellent efficiency, high enantioselectivity, and a broad substrate scope, offering a practical and versatile approach to accessing deuterium-labeled compounds.
Collapse
Affiliation(s)
- Junyu Zhou
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuxiang Zhang
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Min
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Haoting Wang
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jingyi Ruan
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Centre for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Gu J, Zhang LH, Zhuang HF, He Y. Atroposelective [4+1] annulation for the synthesis of isotopic isoindolinones bearing both central and axial chirality. Chem Sci 2025; 16:5735-5744. [PMID: 40046081 PMCID: PMC11877746 DOI: 10.1039/d5sc00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Isotopically chiral molecules have drawn much attention due to their practical applications in drug discovery. However, existing studies in this area are mainly limited to centrally chiral molecules and H/D exchange. Herein, we report a chiral phosphoric acid-catalyzed atroposelective [4+1] annulation of ketoaldehydes and 1H-indol-1-amines. By means of this strategy, a series of D- and 18O-labeled atropisomers featuring both central and axial chiralities are synthesized with high enantioselectivities and diastereoselectivities and good to excellent isotopic incorporation. Experimental and density functional theory studies suggest that the reaction involves a sequential condensation, cyclization and isomerization cascade, in which the second step is the enantio-determining process.
Collapse
Affiliation(s)
- Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Li-Hong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
3
|
Carretero JC, Rodríguez N, Adrio J. Metal catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides: structural diversity at the dipole partner. Chem Commun (Camb) 2025; 61:3821-3831. [PMID: 39945035 DOI: 10.1039/d4cc06484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The 1,3-dipolar cycloaddition of azomethine ylides represents a versatile approach for synthesizing pyrrolidines, valuable structural motifs in synthetic and medicinal chemistry. However, most studies to date have relied predominantly on α-iminoesters as ylide precursors, thereby limiting the broader synthetic applications of this strategy. This feature article highlights alternative azomethine ylide precursors, beyond conventional α-iminoesters, which have facilitated the preparation of pyrrolidines with new subtitution patterns.
Collapse
Affiliation(s)
- Juan Carlos Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
4
|
Li H, Liu Y, Zhang S, Ma L, Zeng Z, Zhou Z, Gandon V, Xu H, Yi W, Wang S. Access to N-α-deuterated amino acids and DNA conjugates via Ca(II)-HFIP-mediated reductive deutero-amination of α-oxo-carbonyl compounds. Nat Commun 2025; 16:1816. [PMID: 39979333 PMCID: PMC11842556 DOI: 10.1038/s41467-025-57098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
The development of practical and selective strategies for deuterium incorporation to construct deuterated molecules, particularly deuterium-labeled amino acids, has become as a growing focus of basic research, yet it remains a formidable challenge. Herein, we present a bioinspired calcium-HFIP-mediated site-selective reductive deutero-amination of α-oxo-carbonyl compounds with amines. Utilizing d2-Hantzsch ester as the deuterium source, this reaction attains remarkable deuteration efficiency (> 99% deuteration). It enables the synthesis of N-α-deuterated amino acid motifs with a wide range of functionality, as evidenced by over 130 examples. The method exhibits compatibility with diverse substrates, such as amino acids, peptides, drug molecules, and natural products bearing different substituents. Moreover, the application of this strategy in the synthesis of DNA-tagged N-α-deuterated amino acids/peptides has been demonstrated. This work offers an efficient and innovative solution for deuterated amino acid chemistry and holds substantial application potential in organic synthesis, medicinal chemistry, and chemical biology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, Orsay, France
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Xiao G, Sun H, Jiang G, Liu Y, Song G, Kong D. Binary Catalytic Hydrogen/Deuterium Exchange of Free α-Amino Acids and Derivatives. Chemistry 2024; 30:e202402045. [PMID: 39042826 DOI: 10.1002/chem.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The increasing demand for deuterium-labeled amino acids and derivatives has heightened interest in direct hydrogen/deuterium exchange reactions of free amino acids. Existing methods, including biocatalysis and metal catalysis, typically require expensive deuterium sources or excessive use of deuterium reagents and often struggle with site selectivity. In contrast, this binary catalysis system, employing benzaldehyde and Cs2CO3 in the presence of inexpensive D2O with minimal stoichiometric quantities, facilitates efficient hydrogen/deuterium exchange at the α-position of amino acids without the need for protecting groups in the polar aprotic solvent DMSO. The process is highly compatible with most natural and non-natural α-amino acids and derivatives, even those with potentially reactive functionalities. This advancement not only addresses the cost and efficiency concerns of existing methods but also significantly broadens the applicability and precision of deuterium labeling in biochemical research.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gege Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Zheng J, Tang J, Jin S, Hu H, Jiang ZJ, Chen J, Bai JF, Gao Z. Site-Selective Deuteration of α-Amino Esters with 2-Hydroxynicotinaldehyde as a Catalyst. ACS OMEGA 2024; 9:26963-26972. [PMID: 38947810 PMCID: PMC11209932 DOI: 10.1021/acsomega.3c09974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
An efficient method has been developed for the synthesis of α-deuterated α-amino esters via hydrogen isotope exchange of α-amino esters in D2O with 2-hydroxynicotinaldehyde as a catalyst under mild conditions. This methodology exhibits a wide range of substrate scopes, remarkable functional group tolerance, and affording the desired products in good yields with excellent deuterium incorporation. Notably, the ortho-hydroxyl group and the pyridine ring of the catalyst play a crucial role in the catalytic activity, which not only stabilizes the carbon-anion intermediates but also enhances the acidity of the amino esters' α-C-H bond.
Collapse
Affiliation(s)
- Jinfeng Zheng
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- School
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s
Republic of China
| | - Jianbo Tang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shenhao Jin
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Hao Hu
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jia Chen
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- Ningbo
Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People’s Republic of China
| |
Collapse
|
7
|
Shao F, Ma F, Li Y, Jiang W, Wei Z, Zhong X, Wang H, Wang L, Wang J. Ru Supported on p-phthalic acid-Mn Derived from a Mn Metal-Organic Framework for Thermo- and Electrocatalytic Synthesis of Ethylene-D4 Glycol. CHEMSUSCHEM 2023; 16:e202202395. [PMID: 37012670 DOI: 10.1002/cssc.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.
Collapse
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fandong Ma
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanan Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjie Jiang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ligeng Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Chang X, Liu XT, Li F, Yang Y, Chung LW, Wang CJ. Electron-rich benzofulvenes as effective dipolarophiles in copper(i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2023; 14:5460-5469. [PMID: 37234882 PMCID: PMC10207880 DOI: 10.1039/d3sc00435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A series of benzofulvenes without any electron-withdrawing substituents were employed as 2π-type dipolarophiles for the first time to participate in Cu(i)-catalyzed asymmetric 1,3-dipolar cycloaddition (1,3-DC) reactions of azomethine ylides. An intrinsic non-benzenoid aromatic characteristic from benzofulvenes serves as a key driving force for activation of the electron-rich benzofulvenes. Utilizing the current methodology, a wide range of multi-substituted chiral spiro-pyrrolidine derivatives containing two contiguous all-carbon quaternary centers were formed in good yield with exclusive chemo-/regioselectivity and high to excellent stereoselectivity. Computational mechanistic studies elucidate the origin of the stereochemical outcome and the chemoselectivity, in which the thermostability of these cycloaddition products is the major factor.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Fangfang Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yuhong Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
9
|
Tarrach X, Yang J, Soleiman-Beigi M, Díez-González S. Straightforward and Efficient Deuteration of Terminal Alkynes with Copper Catalysis. Catalysts 2023. [DOI: 10.3390/catal13040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The mild and effective preparation of deuterated organic molecules is an active area of research due to their important applications. Herein, we report an air-stable and easy to access copper(I) complex as catalyst for the deuteration of mono-substituted alkynes. Reactions were carried out in technical solvents and in the presence of air, to obtain excellent deuterium incorporation in a range of functionalised alkynes.
Collapse
|
10
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Fu C, Chang X, Xiao L, Wang CJ. Stereodivergent Synthesis of Enantioenriched α-Deuterated α-Amino Acids via Cascade Cu(I)-Catalyzed H-D Exchange and Dual Cu- and Ir-Catalyzed Allylation. Org Lett 2022; 24:5562-5567. [PMID: 35862668 DOI: 10.1021/acs.orglett.2c02102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A one-pot Cu-mediated H-D exchange with inexpensive heavy water as the deuterium source, followed by Cu- and Ir-catalyzed stereodivergent allylic alkylation, has been developed, providing efficient access to enantioenriched α-deuterium-labeled α-amino acids from readily available glycine imine esters in a high yield with excellent stereoselectivity. High deuterium enrichment, exquisite regioselectivity, precise stereoselectivity control, and operationally convenient procedures make this protocol appealing for the preparation of highly synthetically useful α-deuterated α-amino acids.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|