1
|
Ju D, Modi V, Khade RL, Zhang Y. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Commun Chem 2024; 7:279. [PMID: 39613908 DOI: 10.1038/s42004-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate. Results show that electron-deficient substrate ethyl acrylate has a much higher barrier than the electron-rich styrene. For styrene, the predicted barrier trend is consistent with experimentally used heme analogue cofactors, which can significantly reduce barriers. For ethyl acrylate, while the best non-native axial ligand only marginally improves the reactivity versus the native histidine model, a couple of computationally studied macrocycles can dramatically reduce barriers to the level comparable to styrene. These results will facilitate the development of better biocatalysts in this area.
Collapse
Affiliation(s)
- Dongrun Ju
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Vrinda Modi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.
| |
Collapse
|
2
|
Rimoldi I, Coffetti G, Gandolfi R, Facchetti G. Hybrid Metal Catalysts as Valuable Tools in Organic Synthesis: An Overview of the Recent Advances in Asymmetric C─C Bond Formation Reactions. Molecules 2024; 29:5090. [PMID: 39519731 PMCID: PMC11547358 DOI: 10.3390/molecules29215090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon-carbon bond formation represents a key reaction in organic synthesis, resulting in paramount importance for constructing the carbon backbone of organic molecules. However, traditional metal-based catalysis, despite its advantages, often struggles with issues related to efficiency, selectivity, and sustainability. On the other hand, while biocatalysis offers superior selectivity due to an extraordinary recognition process of the substrate, the scope of its applicable reactions remains somewhat limited. In this context, Artificial Metalloenzymes (ArMs) and Metallo Peptides (MPs) offer a promising and not fully explored solution, merging the two fields of transition metal catalysis and biotransformations, by inserting a catalytically active metal cofactor into a customizable protein scaffold or coordinating the metal ion directly to a short and tunable amino acid (Aa) sequence, respectively. As a result, these hybrid catalysts have gained attention as valuable tools for challenging catalytic transformations, providing systems with new-to-nature properties in organic synthesis. This review offers an overview of recent advances in the development of ArMs and MPs, focusing on their application in the asymmetric carbon-carbon bond-forming reactions, such as carbene insertion, Michael additions, Friedel-Crafts and cross-coupling reactions, and cyclopropanation, underscoring the versatility of these systems in synthesizing biologically relevant compounds.
Collapse
Affiliation(s)
| | | | | | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy; (I.R.); (G.C.); (R.G.)
| |
Collapse
|
3
|
Villada JD, Majhi J, Lehuédé V, Hendricks ME, Neufeld K, Tona V, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of Fluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202406779. [PMID: 38752612 DOI: 10.1002/anie.202406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/10/2024]
Abstract
Fluorinated cyclopropanes are highly desired pharmacophores in drug discovery owing to the rigid nature of the cyclopropane ring and the beneficial effects of C-F bonds on the pharmacokinetic properties, cell permeability, and metabolic stability of drug molecules. Herein a biocatalytic strategy for the stereoselective synthesis of mono-fluorinated and gem-difluoro cyclopropanes is reported though the use of engineered myoglobin-based catalysts. In particular, this system allows for a broad range of gem-difluoro alkenes to be cyclopropanated in the presence of diazoacetonitrile with excellent diastereo and enantiocontrol (up to 99 : 1 d.r. and 99 % e.e.), thereby enabling a transformation not currently accessible with chemocatalytic methods. The synthetic utility of the present approach is further exemplified through the gram-scale synthesis of a key gem-difluorinated cyclopropane intermediate useful for the preparation of fluorinated bioactive molecules.
Collapse
Affiliation(s)
- Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Jadab Majhi
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Valentin Lehuédé
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Michelle E Hendricks
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Katharina Neufeld
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Veronica Tona
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Cilag AG, Hochstrasse 201, 8200, Schaffhausen, Switzerland
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
4
|
Roy S, Wang Y, Zhao X, Dayananda T, Chu JM, Zhang Y, Fasan R. Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles. J Am Chem Soc 2024; 146:19673-19679. [PMID: 39008121 PMCID: PMC11672115 DOI: 10.1021/jacs.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yining Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xinyi Zhao
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Thakshila Dayananda
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Dollet R, Villada JD, Poisson T, Fasan R, Jubault P. Chemoenzymatic synthesis of optically active α-cyclopropyl-pyruvates and cyclobutenoates via enzyme-catalyzed carbene transfer with diazopyruvate. Org Chem Front 2024; 11:2008-2014. [PMID: 39007032 PMCID: PMC11241863 DOI: 10.1039/d3qo01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cyclopropanes are recurrent structural motifs in natural products and bioactive molecules. Recently, biocatalytic cyclopropanations have emerged as a powerful approach to access enantioenriched cyclopropanes, complementing chemocatalytic approaches developed over the last several decades. Here, we report the development of a first biocatalytic strategy for cyclopropanation using ethyl α-diazopyruvate as a novel enzyme-compatible carbene precursor. Using myoglobin variant Mb(H64V,V68G) as the biocatalyst, this method afforded the efficient synthesis of α-cyclopropylpyruvates in high diastereomeric ratios and enantiomeric excess (up to 99% ee). The ketoester moiety in the cyclopropane products can be used to synthesize diverse optically pure cyclopropane derivatives. Furthermore, the enzymatically obtained α-cyclopropylpyruvate products could be converted into enantiopure cyclobutenoates via a metal-free photochemical ring expansion without loss of optical activity.
Collapse
Affiliation(s)
- Raphaël Dollet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Thomas Poisson
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
6
|
Xu Y, Zhao N, Li F, Wang C, Xie H, Wu J, Cheng L, Wang L, Wang Z. Application of Vitreoscilla Hemoglobin as a Green and Efficient Biocatalyst for the Synthesis of Benzoxazoles in Water. Chembiochem 2024; 25:e202300609. [PMID: 37877236 DOI: 10.1002/cbic.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| |
Collapse
|
7
|
Nam D, Bacik JP, Khade RL, Aguilera MC, Wei Y, Villada JD, Neidig ML, Zhang Y, Ando N, Fasan R. Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone. Nat Commun 2023; 14:7985. [PMID: 38042860 PMCID: PMC10693563 DOI: 10.1038/s41467-023-43559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.
Collapse
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - John-Paul Bacik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | | | - Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Juan D Villada
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
8
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
9
|
Calvó-Tusell C, Liu Z, Chen K, Arnold FH, Garcia-Borràs M. Reversing the Enantioselectivity of Enzymatic Carbene N-H Insertion Through Mechanism-Guided Protein Engineering. Angew Chem Int Ed Engl 2023; 62:e202303879. [PMID: 37260412 DOI: 10.1002/anie.202303879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
We report a computationally driven approach to access enantiodivergent enzymatic carbene N-H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone-carbene (LAC) intermediate in the enzyme active site by installing a new H-bond anchoring point. This H-bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselective N-nucleophilic attack by the amine substrate. By combining MD simulations and site-saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineered S-selective P411 enzymes. The resulting variant, L5_FL-B3, accepts a broad scope of amine substrates for N-H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93 er).
Collapse
Affiliation(s)
- Carla Calvó-Tusell
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
10
|
Zhang J, Ma Y, Zhu F, Bao J, Wu Q, Gao SS, Cui C. Structure-guided semi-rational design of an imine reductase for enantio-complementary synthesis of pyrrolidinamine. Chem Sci 2023; 14:4265-4272. [PMID: 37123194 PMCID: PMC10132124 DOI: 10.1039/d2sc07014f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 05/02/2023] Open
Abstract
In this study, engineered imine reductases (IREDs) of IRED M5, originally from Actinoalloteichus hymeniacidonis, were obtained through structure-guided semi-rational design. By focusing on mutagenesis of the residues that directly interact with the ketone donor moiety, we identified two residues W234 and F260, playing essential roles in enhancing and reversing the stereoselectivity, respectively. Moreover, two completely enantio-complementary variants S241L/F260N (R-selectivity up to 99%) and I149D/W234I (S-selectivity up to 99%) were achieved. Both variants showed excellent stereoselectivity toward the tested substrates, offering valuable biocatalysts for synthesizing pyrrolidinamines. Its application was demonstrated in a short synthesis of the key intermediates of potential drug molecules leniolisib and JAK1 inhibitor 4, from cheap and commercially available pro-chiral N-Boc-piperidone 1 (2 and 3 steps, respectively).
Collapse
Affiliation(s)
- Jun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- School of Life Science, Hebei University Baoding 071002 China
| | - Yaqing Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Fangfang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- College of Biotechnology, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jinping Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Qiaqing Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- National Technology Innovation Center of Synthetic Biology Tianjin 300308 China
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- National Technology Innovation Center of Synthetic Biology Tianjin 300308 China
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
- National Technology Innovation Center of Synthetic Biology Tianjin 300308 China
| |
Collapse
|
11
|
Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215088. [PMID: 36417593 DOI: 10.1002/anie.202215088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Zhifeng Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
12
|
Efficient synthesis of 2-aryl benzothiazoles mediated by Vitreoscilla hemoglobin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [DOI: 10.1039/d2np90034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyjapone A from Hypericum japonicum.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|