1
|
Gál D, Szántai L, Buzsáki D, Kelemen Z. Unveiling the True Identity of Carborane-Fused Phosphorus Heterocycles. Org Lett 2025. [PMID: 40419455 DOI: 10.1021/acs.orglett.5c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In recent years, the possible global 2D/3D aromaticity of carborane-fused cycles has been widely debated. While phosphorus heterocycles fused with carboranes are known, the 2D aromatic character in carborane-fused phospholes was only recently reported. However, our computational study found that these compounds lack 2D aromaticity. Instead, they should be viewed not as a fusion of an aromatic ring but as a fusion of an unsaturated ring with carboranes.
Collapse
Affiliation(s)
- Dalma Gál
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary
| | - Lóránt Szántai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary
| | - Dániel Buzsáki
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary
- HUN-REN Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem Rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
2
|
Yao C, Wang M, Cao L. Hydrogenated Planar Aluminum Clusters: A Density Functional Theory Study. Molecules 2025; 30:1389. [PMID: 40142164 PMCID: PMC11944960 DOI: 10.3390/molecules30061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The low-lying energy structures of small planar aluminum clusters Aln (n = 3-6, 8-10), hydrogenated small planar aluminum clusters AlnHm (n = 3-8, m = 1-2) and the lowest-energy structure of AlnHm (n = 6-10, m = 0-2) are determined by density functional theory (DFT) calculations. Many stable planar structures have been found; some are consistent with the reported ones, and some are new configurations. The preservation of planar cluster structures has been observed during the dissociative adsorption of H2.Hydrogen is adsorbed at different positions on planar aluminum clusters. Dissociative adsorption configurations of the planar structure and lowest-energy structure experienced a decrease in hydrogen adsorption energy with an increase in cluster size. Among the clusters we calculated, Al4H1 and Al4H2 have the highest HOMO-LUMO gap, indicating that they may be more abundant than other clusters. The geometric structure and electronic properties of these clusters are also discussed.
Collapse
Affiliation(s)
- Changhong Yao
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
| | | | | |
Collapse
|
3
|
Szathmári B, Hessz D, Zámbó D, Bruhn C, Pietschnig R, Udvardy A, Szabó P, Holczbauer T, Balogh MJ, Kelemen Z. Carborane-Decorated Siloles with Highly Efficient Solid-State Emissions - What Drives the Photophysical Properties? Chemistry 2025; 31:e202404462. [PMID: 39831519 PMCID: PMC11914931 DOI: 10.1002/chem.202404462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
New hybrids were synthesised by linking carboranes and siloles, both of which are known as aggregation-induced emission active units. Although most of the newly synthesised systems do not display notable quantum yield either in solution or in the aggregated state, they emit strongly in the solid-state, and a quantum yield of up to 100 % can be achieved. The tailorable quantum yield can be attributed to the packing of the molecules in the crystal lattice ruled by the carborane and phenyl moieties according to the SC-XRD data. Our experimental results, complemented by density functional theory calculations, show that the silole moiety primarily influences the photophysical properties. At the same time, the carborane serves as a steric building block without direct responsibility for the aggregation-induced emission property. The patterns of substituents can alter the absorption and emission properties.
Collapse
Affiliation(s)
- Balázs Szathmári
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Dóra Hessz
- Department of Physical Chemistry and Materials Science and MTA-BME Lendület Quantum Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Dániel Zámbó
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, H-1121, Budapest, Hungary
| | - Clemens Bruhn
- Institute of Chemistry and CINSat, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Rudolf Pietschnig
- Institute of Chemistry and CINSat, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Antal Udvardy
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Pál Szabó
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Tamás Holczbauer
- Chemical Crystallography Research Laboratory and Stereochemistry Research Group, Institute for Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2 A, H-1117, Budapest, Hungary
| | - Marcell J Balogh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| |
Collapse
|
4
|
Noori Z, Solà M, Viñas C, Teixidor F, Poater J. Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane. Beilstein J Org Chem 2025; 21:412-420. [PMID: 39996167 PMCID: PMC11849550 DOI: 10.3762/bjoc.21.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
A new series of o-carborane-fused pyrazoles has been recently successfully synthesized. This fusion was expected to create a hybrid 3D/2D aromatic system, combining the 3D aromaticity of o-carborane with the 2D aromaticity of pyrazole. However, while the boron cage retains its aromatic character, the pyrazole's aromaticity is lost. As a result, rather than forming o-carborane-fused pyrazoles, the synthesis yielded o-carborane-fused pyrazolines, which are non-aromatic. The limited overlap between the π molecular orbitals (MOs) of the planar heterocycle and the n + 1 MOs of the carborane prevents significant electronic delocalization between the two fused components. This contrasts with the fusion of pyrazole and benzene to form indazole, where both rings maintain their 2D aromaticity. Our findings demonstrate that the peripheral σ-aromaticity of carborane and the π-aromaticity of the heterocycle are orthogonal, making a true 3D/2D aromatic system unachievable. The carborane is highly aromatic, generating highly negative NICS values (-25 to -30 ppm). We have observed that these high NICS values extend to fused rings, leading to incorrect estimations of aromaticity. Therefore, relying solely on NICS can be misleading, and other computational indicators, along with experimental or structural data, should be used to accurately assess aromaticity.
Collapse
Affiliation(s)
- Zahra Noori
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Buzsáki D, Gál D, Harcsa-Pintér Z, Kalabay L, Kelemen Z. The Possible Aromatic Conjugation via the Different Edges of (Car)Borane Clusters: Can the Relationship Between 3D and 2D Aromatic Systems Be Reconciled? Chemistry 2024; 30:e202402970. [PMID: 39206676 DOI: 10.1002/chem.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The possible aromatic conjugation between 3D and 2D aromatic units is in the focus since the synthesis of benzocarborane. It has been showed that in the 3D aromatic icosahedral 1,2-dicarba-closo-dodecaborane systems fused with 2D aromatic rings a global 3D/2D aromaticity does not exist. Despite this fact during the last years several studies proposed interactions between 2D and 3D moieties. Herein, while tuning the size and the effective charge of the (car)borane systems, we demonstrate that global aromatic character can be excluded in any investigated cases, and the detectable conjugative properties can be explained the effect of the well-known negative hyperconjugation.
Collapse
Affiliation(s)
- Dániel Buzsáki
- Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3., 1111, Budapest, Hungary
| | - Dalma Gál
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3., 1111, Budapest, Hungary
| | - Zsófia Harcsa-Pintér
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3., 1111, Budapest, Hungary
| | - László Kalabay
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3., 1111, Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp 3., 1111, Budapest, Hungary
| |
Collapse
|
6
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
7
|
Wu L, Zhang X, Moos M, Krummenacher I, Dietz M, Jayaraman A, Bertermann R, Ye Q, Finze M, Wenzel M, Mitric R, Lambert C, Braunschweig H, Ji L. Full Electron Delocalization across the Cluster in 1,12-bisBMes 2- p-carborane Radical Anion. J Am Chem Soc 2024; 146:17956-17963. [PMID: 38850552 DOI: 10.1021/jacs.4c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Conjugation between three-dimensional (3D) carboranes and the attached substituents is commonly believed to be very weak. In this paper, we report that reducing 1,12-bis(BMes2)-p-carborane (B2pCab) with one electron gives a radical anion with a centrosymmetric semiquinoidal structure. This radical anion shows extensive electron delocalization between the two boron centers over the p-carborane bridge due to the overlap of carborane lowest unoccupied molecular orbital (LUMO) and the BMes2 LUMO. Unlike dianions of other C2B10H12 carboranes, which rearrange to a nido-form, two-electron reduction of B2pCab leads to a rearrangement into a basket-shaped intermediate.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xinning Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Arumugam Jayaraman
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Qing Ye
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
8
|
Wu L, Holzapfel M, Schmiedel A, Peng F, Moos M, Mentzel P, Shi J, Neubert T, Bertermann R, Finze M, Fox MA, Lambert C, Ji L. Optically induced charge-transfer in donor-acceptor-substituted p- and m- C 2B 10H 12 carboranes. Nat Commun 2024; 15:3005. [PMID: 38589381 PMCID: PMC11001991 DOI: 10.1038/s41467-024-47384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Icosahedral carboranes, C2B10H12, have long been considered to be aromatic but the extent of conjugation between these clusters and their substituents is still being debated. m- and p-Carboranes are compared with m- and p-phenylenes as conjugated bridges in optical functional chromophores with a donor and an acceptor as substituents here. The absorption and fluorescence data for both carboranes from experimental techniques (including femtosecond transient absorption, time-resolved fluorescence and broadband fluorescence upconversion) show that the absorption and emission processes involve strong intramolecular charge transfer between the donor and acceptor substituents via the carborane cluster. From quantum chemical calculations on these carborane systems, the charge transfer process depends on the relative torsional angles of the donor and acceptor groups where an overlap between the two frontier orbitals exists in the bridging carborane cluster.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fuwei Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Thomas Neubert
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mark A Fox
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
9
|
Wang J, Ye Q. Borirenes and Boriranes: Development and Perspectives. Chemistry 2024; 30:e202303695. [PMID: 38085103 DOI: 10.1002/chem.202303695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 12/31/2023]
Abstract
Strained compounds constitute a highly topical area of research in chemistry. Borirene and borirane both feature a BC2 three-membered ring. They can be viewed as the structural analogues of cyclopropane and cyclopropene, where a CH2 unit of the carbonaceous counterparts is replaced with BH, respectively. Indeed, this structural variation introduces numerous intriguing aspects. For instance, borirane and borirene are both Lewis acidic due to the presence of a tricoordinate borane center. In addition, borirene is 2π aromatic according to Hückel's rule. In addition to their ability to form adducts with Lewis bases and the capacity of borirenes to act as ligands in coordination with metals, both borirenes and boriranes exhibit ring-opening reactivity due to the considerable ring strain. Under specific conditions, coordinated boriranes can even cleave two BC bonds to serve as formal borylene sources (although the reaction mechanisms are quite complex). On the other hand, recent successful syntheses of benzoborienes and their carborane-based three-dimensional analogues (also referred to as carborane-fused boriranes) have introduced novel perspectives to this field. For instance, they display excellent ring-expanding reactivity, possibly attributed to the boosted ring strain arising from the fusion of borirenes with benzene and boriranes with o-carborane. Importantly, their applications as valuable "BC2 " synthons have become increasingly evident along with the newly disclosed reactivity. Additionally, the boosted Lewis acidity of carborane-fused boriranes, thanks to the potent electron-withdrawing effect of o-carborane, combined with their readiness for ring enlargement, makes them promising candidates as electron-accepting building blocks in the construction of chemically responsive luminescent materials. This review provides a summary of the synthesis and reactivity of borirene and borirane derivatives, with the aim of encouraging the design of new borierene- and borirane-based molecules and inspiring further exploration of their potential applications.
Collapse
Affiliation(s)
- Junyi Wang
- Department of chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry& Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Poater J, Viñas C, Escayola S, Solà M, Teixidor F. Pioneering the Power of Twin Bonds in a Revolutionary Double Bond Formation. Unveiling the True Identity of o-Carboryne as o-Carborene. Chemistry 2023:e202302448. [PMID: 37702301 DOI: 10.1002/chem.202302448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
The homolytic elimination of two H atoms from two adjacent carbons in benzene results in the aromatic product o-benzyne. In a similar way, the homolytic elimination of two H atoms from the two adjacent carbons in 1,2-C2 B10 H12 results in the aromatic product o-carboryne. In this work, we provide experimental and computational evidences that despite the similarity of o-carboryne and o-benzyne, the nature of the C-C bond generated between two adjacent carbons that lose H atoms is different. While in o-benzyne the C-C bond behaves as a triple bond, in o-carboryne the C-C bond is a double bond. Therefore, we must stop naming 1,2-dehydro-o-carboryne as o-carboryne but instead call it o-carborene.
Collapse
Affiliation(s)
- Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona Consejo Superior de Investigaciones Científicas Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
- Donostia International Physics Center (DIPC), Donostia, Euskadi, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona Consejo Superior de Investigaciones Científicas Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
11
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Makarenkov AV, Kiselev SS, Kononova EG, Dolgushin FM, Peregudov AS, Borisov YA, Ol’shevskaya VA. Synthesis, Characterization and DFT Study of a New Family of High-Energy Compounds Based on s-Triazine, Carborane and Tetrazoles. Molecules 2022; 27:7484. [PMID: 36364313 PMCID: PMC9656522 DOI: 10.3390/molecules27217484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/21/2024] Open
Abstract
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
Collapse
Affiliation(s)
- Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Sergey S. Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Yurii A. Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Valentina A. Ol’shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|