1
|
Tokita AM, Devergne T, Saitta AM, Behler J. Free energy profiles for chemical reactions in solution from high-dimensional neural network potentials: The case of the Strecker synthesis. J Chem Phys 2025; 162:174120. [PMID: 40326597 DOI: 10.1063/5.0268948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Machine learning potentials (MLPs) have become a popular tool in chemistry and materials science as they combine the accuracy of electronic structure calculations with the high computational efficiency of analytic potentials. MLPs are particularly useful for computationally demanding simulations such as the determination of free energy profiles governing chemical reactions in solution, but to date, such applications are still rare. In this work, we show how umbrella sampling simulations can be combined with active learning of high-dimensional neural network potentials (HDNNPs) to construct free energy profiles in a systematic way. For the example of the first step of Strecker synthesis of glycine in aqueous solution, we provide a detailed analysis of the improving quality of HDNNPs for datasets of increasing size. We find that, in addition to the typical quantification of energy and force errors with respect to the underlying density functional theory data, the long-term stability of the simulations and the convergence of physical properties should be rigorously monitored to obtain reliable and converged free energy profiles of chemical reactions in solution.
Collapse
Affiliation(s)
- Alea Miako Tokita
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Timothée Devergne
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMRCNRS 7590, Institut de Minéralogie, de Physique des Matériaux et deCosmochimie, IMPMC, F-75005 Paris, France
- Atomistic Simulations, Italian Institute of Technology, Genova, Italy and Computational Statistics and Machine Learning, Italian Institute of Technology, Genova, Italy
| | - A Marco Saitta
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMRCNRS 7590, Institut de Minéralogie, de Physique des Matériaux et deCosmochimie, IMPMC, F-75005 Paris, France
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| |
Collapse
|
2
|
Xia J, Zhang Y, Jiang B. The evolution of machine learning potentials for molecules, reactions and materials. Chem Soc Rev 2025. [PMID: 40227021 DOI: 10.1039/d5cs00104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Recent years have witnessed the fast development of machine learning potentials (MLPs) and their widespread applications in chemistry, physics, and material science. By fitting discrete ab initio data faithfully to continuous and symmetry-preserving mathematical forms, MLPs have enabled accurate and efficient atomistic simulations in a large scale from first principles. In this review, we provide an overview of the evolution of MLPs in the past two decades and focus on the state-of-the-art MLPs proposed in the last a few years for molecules, reactions, and materials. We discuss some representative applications of MLPs and the trend of developing universal potentials across a variety of systems. Finally, we outline a list of open challenges and opportunities in the development and applications of MLPs.
Collapse
Affiliation(s)
- Junfan Xia
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaolong Zhang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bin Jiang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Jiao Z, Mao Y, Lu R, Liu Y, Guo L, Wang Z. Fine-Tuning Graph Neural Networks via Active Learning: Unlocking the Potential of Graph Neural Networks Trained on Nonaqueous Systems for Aqueous CO 2 Reduction. J Chem Theory Comput 2025; 21:3176-3186. [PMID: 40084714 DOI: 10.1021/acs.jctc.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Graph neural networks (GNNs) have revolutionized catalysis research with their efficiency and accuracy in modeling complex chemical interactions. However, adapting GNNs trained on nonaqueous data sets to aqueous systems poses notable challenges due to intricate water interactions. In this study, we proposed an active learning-based fine-tuning approach to extend the applicability of GNNs to aqueous environments. The geometry optimization and transition state search workflows are designed to reduce computational costs while maintaining DFT-level accuracy. Applied to the CO2 reduction reaction, the workflow delivers a 2-3-fold acceleration in geometry optimization through a relaxed force threshold combined with DFT refinement. The versatility of the transition state search algorithm was demonstrated on key C-C coupling pathways, pinpointing *CO-*COH as the most energetically favorable pathway in aqueous systems of Cu and Cu-based Ag, Au, and Zn alloys. The Brønsted-Evans-Polanyi relationship remains robust under water-induced fluctuations, with alloyed metals such as Al, Ga, and Pd, along with Ag, Au, and Zn, exhibiting coupling efficiency comparable to that of Cu. Additionally, perturbation-based training on forces and energies extends the application of GNNs to aqueous ab initio molecular dynamics simulations, enabling efficient modeling of dynamical trajectories. This work presents novel approaches to adapting nonaqueous models for application in aqueous systems, highlighting GNNs' potential in solvated environments and laying a foundation for accelerating predictions of catalytic mechanisms under realistic conditions.
Collapse
Affiliation(s)
- Zihao Jiao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ruihu Lu
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Yu Q, Li P, Ni X, Li Y, Wang L. Dynamics and kinetics exploration of the oxygen reduction reaction at the Fe-N 4/C-water interface accelerated by a machine learning force field. Chem Sci 2025; 16:3620-3629. [PMID: 39877822 PMCID: PMC11770587 DOI: 10.1039/d4sc06422d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N4/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O2 adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N4/C-water interface, which needs to overcome a free energy barrier of 0.39 eV. By statistical analysis of solvent configurations for proton-coupled electron transfer (PCET) processes, it is revealed that the configurations of interface water remarkably influence the reaction efficiency. More hydrogen bonds and longer lifetimes facilitate the PCET reactions and even make them barrierless. Our theoretical framework highlights the significance of solvent configurations in determining free energy barriers, and offers new insights into the reaction mechanism of the ORR on Fe-N4/C catalysts.
Collapse
Affiliation(s)
- Qinghan Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
| | - Pai Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Xing Ni
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology Taipa Macau SAR 999078 China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou Jiangsu 215123 PR China
| |
Collapse
|
5
|
Kulichenko M, Nebgen B, Lubbers N, Smith JS, Barros K, Allen AEA, Habib A, Shinkle E, Fedik N, Li YW, Messerly RA, Tretiak S. Data Generation for Machine Learning Interatomic Potentials and Beyond. Chem Rev 2024; 124:13681-13714. [PMID: 39572011 DOI: 10.1021/acs.chemrev.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The field of data-driven chemistry is undergoing an evolution, driven by innovations in machine learning models for predicting molecular properties and behavior. Recent strides in ML-based interatomic potentials have paved the way for accurate modeling of diverse chemical and structural properties at the atomic level. The key determinant defining MLIP reliability remains the quality of the training data. A paramount challenge lies in constructing training sets that capture specific domains in the vast chemical and structural space. This Review navigates the intricate landscape of essential components and integrity of training data that ensure the extensibility and transferability of the resulting models. We delve into the details of active learning, discussing its various facets and implementations. We outline different types of uncertainty quantification applied to atomistic data acquisition and the correlations between estimated uncertainty and true error. The role of atomistic data samplers in generating diverse and informative structures is highlighted. Furthermore, we discuss data acquisition via modified and surrogate potential energy surfaces as an innovative approach to diversify training data. The Review also provides a list of publicly available data sets that cover essential domains of chemical space.
Collapse
Affiliation(s)
- Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Justin S Smith
- NVIDIA Corporation, Santa Clara, California 95051, United States
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alice E A Allen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adela Habib
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Emily Shinkle
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ying Wai Li
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard A Messerly
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Célerse F, Juraskova V, Das S, Wodrich MD, Corminboeuf C. Capturing Dichotomic Solvent Behavior in Solute-Solvent Reactions with Neural Network Potentials. J Chem Theory Comput 2024; 20:10350-10361. [PMID: 39570795 PMCID: PMC11635972 DOI: 10.1021/acs.jctc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Simulations of chemical reactivity in condensed phase systems represent an ongoing challenge in computational chemistry, where traditional quantum chemical approaches typically struggle with both the size of the system and the potential complexity of the reaction. Here, we introduce a workflow aimed at efficiently training neural network potentials (NNPs) to explore energy barriers in solution at the hybrid density functional theory level. The computational burden associated with training at the PBE0-D3(BJ) level is bypassed through the use of active and transfer learning techniques, whereas extensive sampling of the transition state region is accelerated by well-tempered metadynamics simulations using multiple time step integration. These NNPs serve to explore a puzzling solute-solvent reactivity route involving the ring opening of N-enoxyphthalimide experimentally observed in methanol but not in 2,2,2-trifluoroethanol (TFE). This reaction represents a challenging example characterized by intricate hydrogen bonding networks and structurally ambiguous solvent-sensitive transition states. The methodology successfully delivers detailed free energy surfaces and relative energy barriers in agreement with experiment. These barriers are associated with an ensemble of transition states involving the direct participation of up to five solvent molecules. While this picture contrasts with the single transition state structure assumed by current static models, no drastic qualitative difference is observed between the formed hydrogen bonding networks and the number of participating solvent molecules in methanol or TFE. The dichotomy between the two solvents thus essentially arises from an electronic effect (i.e., distinct nucleophilicity) and from the larger conformational entropy contributions in methanol. This example underscores the critical role that dynamic simulations at the ab initio levels play in capturing the full complexity of solute-solvent interactions.
Collapse
Affiliation(s)
- Frédéric Célerse
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Veronika Juraskova
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shubhajit Das
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matthew D. Wodrich
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Ding R, Chen J, Chen Y, Liu J, Bando Y, Wang X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem Soc Rev 2024; 53:11390-11461. [PMID: 39382108 DOI: 10.1039/d4cs00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry for the creation and optimization of electrocatalysts, which enhance key electrochemical reactions like the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the hydrogen oxidation reaction (HOR), and the oxygen reduction reaction (ORR). This comprehensive review demonstrates how cutting-edge ML techniques are being leveraged in electrocatalyst design to overcome the time-consuming limitations of traditional approaches. ML methods, using experimental data from high-throughput experiments and computational data from simulations such as density functional theory (DFT), readily identify complex correlations between electrocatalyst performance and key material descriptors. Leveraging its unparalleled speed and accuracy, ML has facilitated the discovery of novel candidates and the improvement of known products through its pattern recognition capabilities. This review aims to provide a tailored breakdown of ML applications in a format that is readily accessible to materials scientists. Hence, we comprehensively organize ML-driven research by commonly studied material types for different electrochemical reactions to illustrate how ML adeptly navigates the complex landscape of descriptors for these scenarios. We further highlight ML's critical role in the future discovery and development of electrocatalysts for hydrogen energy transformation. Potential challenges and gaps to fill within this focused domain are also discussed. As a practical guide, we hope this work will bridge the gap between communities and encourage novel paradigms in electrocatalysis research, aiming for more effective and sustainable energy solutions.
Collapse
Affiliation(s)
- Rui Ding
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Yuxin Chen
- Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xuebin Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Cheng X, Wu C, Xu J, Han Y, Xie W, Hu P. Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis. PRECISION CHEMISTRY 2024; 2:570-586. [PMID: 39611023 PMCID: PMC11600352 DOI: 10.1021/prechem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/30/2024]
Abstract
This Perspective explores the integration of machine learning potentials (MLPs) in the research of heterogeneous catalysis, focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes. MLPs utilize extensive databases from high-throughput density functional theory (DFT) calculations to train models that predict atomic configurations, energies, and forces with near-DFT accuracy. These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods. Coupled with global optimization algorithms, MLPs enable systematic investigations across vast structural spaces, making substantial contributions to the modeling of catalyst surface structures under reactive conditions. The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis. The prevailing challenges faced by this approach are also discussed.
Collapse
Affiliation(s)
- Xiran Cheng
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Chenyu Wu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiayan Xu
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, Belfast BT9 5AG, U.K.
| | - Yulan Han
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, Belfast BT9 5AG, U.K.
| | - Wenbo Xie
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - P. Hu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, Belfast BT9 5AG, U.K.
| |
Collapse
|
9
|
Roongcharoen T, Conter G, Sementa L, Melani G, Fortunelli A. Machine-Learning-Accelerated DFT Conformal Sampling of Catalytic Processes. J Chem Theory Comput 2024; 20:9580-9591. [PMID: 39214594 DOI: 10.1021/acs.jctc.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Computational modeling of catalytic processes at gas/solid interfaces plays an increasingly important role in chemistry, enabling accelerated materials and process optimization and rational design. However, efficiency, accuracy, thoroughness, and throughput must be enhanced to maximize its practical impact. By combining interpolation of DFT energetics via highly accurate Machine-Learning Potentials with conformal techniques for building the training database, we present here an original approach (that we name Conformal Sampling of Catalytic Processes, CSCP), to accelerate and achieve an accurate and thorough sampling of novel systems by exporting existing information on a worked-out case. We use methanol decomposition (of interest in the field of hydrogen production and storage) as a test catalytic reaction. Starting from worked-out Pt-based systems, we show that after only two iterations of active-learning CSCP is able to provide reaction energy diagrams for a set of 7 diverse systems (Pd, Ni, Au, Ag, Cu, Co, Fe) leading to DFT-accuracy-level predictions. Cases exhibiting a change in adsorption sites and mechanisms are also successfully reproduced as tests of catalytic path modification. The CSCP approach thus offers itself as an operative tool to fully take advantage of accumulated information to achieve high-throughput sampling of catalytic processes.
Collapse
Affiliation(s)
- Thantip Roongcharoen
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Giorgio Conter
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
- Scuola Normale Superiore, piazza dei Cavalieri 7, Pisa, 56125, Italy
| | - Luca Sementa
- CNR-IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Giacomo Melani
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
10
|
Jiao Z, Liu Y, Wang Z. Application of graph neural network in computational heterogeneous catalysis. J Chem Phys 2024; 161:171001. [PMID: 39484893 DOI: 10.1063/5.0227821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Heterogeneous catalysis, as a key technology in modern chemical industries, plays a vital role in social progress and economic development. However, its complex reaction process poses challenges to theoretical research. Graph neural networks (GNNs) are gradually becoming a key tool in this field as they can intrinsically learn atomic representation and consider connection relationship, making them naturally applicable to atomic and molecular systems. This article introduces the basic principles, current network architectures, and datasets of GNNs and reviews the application of GNN in heterogeneous catalysis from accelerating the materials screening and exploring the potential energy surface. In the end, we summarize the main challenges and potential application prospects of GNNs in future research endeavors.
Collapse
Affiliation(s)
- Zihao Jiao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Xu Y, Jin Y, García Sánchez JS, Pérez-Lemus GR, Zubieta Rico PF, Delferro M, de Pablo JJ. A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning. J Phys Chem Lett 2024; 15:9852-9862. [PMID: 39298736 DOI: 10.1021/acs.jpclett.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A combination of machine learned interatomic potentials (MLIPs) and enhanced sampling simulations is used to investigate the activation of methane on a Ni(111) surface. The work entails the development and iterative refinement of MLIPs, initially trained on a data set constructed via ab initio molecular dynamics simulations, supplemented by adaptive biasing forces, to enrich the sampling of catalytically relevant configurations. Our results reveal that upon incorporation of collective variables that capture the behavior of the reactant molecule, as well as additional frames that describe the dynamic response of the catalytic surface, it is possible to enhance considerably the accuracy of predicted energies and forces. By employing enhanced sampling schemes in the refinement of the MLIP, we systematically explore the potential energy surface, leading to a refined MLIP capable of predicting density functional theory-level energies and forces and replicating key geometric characteristics of the catalytic system. The resulting free energy landscapes at several temperatures provide a detailed view of the thermodynamics and dynamics of methane activation. Specifically, as methane approaches and dissociates on the catalytic surface, the process involves the dynamic interplay of CH4 and the Ni catalyst that includes both enthalpic and entropic contributions. The progression toward the transition state involves a CH4 moiety that is increasingly restrained in its ability to rotate or translate, while the stage following the transition state is characterized by a notable rise of the Ni atom that interacts with the cleaved C-H bond. This leads to an increase in the mobility of the adsorbed species, a feature that becomes more pronounced at higher temperatures.
Collapse
Affiliation(s)
- Yinan Xu
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yezhi Jin
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jireh S García Sánchez
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gustavo R Pérez-Lemus
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Pablo F Zubieta Rico
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, 640 South Ellis Avenue, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
12
|
Zare M, Sahsah D, Saleheen M, Behler J, Heyden A. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. J Chem Theory Comput 2024. [PMID: 39254514 DOI: 10.1021/acs.jctc.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Performing reliable computer simulations of elementary processes occurring at metal-water interfaces is pivotal for novel catalyst design in sustainable energy applications. Computational catalyst design hinges on the ability to reliably and efficiently compute the potential energy surface (PES) of the system. Due to the large system sizes needed for studying processes at liquid water-metal interfaces, these systems can currently not be described using density functional theory (DFT). In this work, we used a hybrid quantum mechanical, molecular mechanical, and machine learning potential for studying the adsorption behavior of phenol, atomic hydrogen, 2-butanol, and 2-butanone on the (0001) facet of Ru under reducing conditions when Ru is not oxidized. Specifically, we describe the adsorbate and the surrounding metal atoms at the DFT level of theory. Here, we also considered the electrostatic field effect of the water molecules on adsorbate-metal interactions. Next, for the water-water and water-adsorbate interactions, we used established classical force fields. Finally, for the water-Ru surface interaction, for which no reliable force fields have been published, we used Behler-Parrinello high-dimensional neural network potentials (HDNNPs). Employing this setup, we used our explicit solvation for metal surface (eSMS) approach to compute the aqueous-phase effect on the low-coverage adsorption of selected molecules and atoms on the (0001) facet of Ru. In agreement with previous experimental and computational studies of oxygenated molecules over transition metal facets, we found that liquid water destabilizes the tested adsorbates on Ru(0001). Interestingly, our findings indicate that adsorbates on Ru are less affected by the presence of an aqueous phase than on other transition metals (e.g., Pt), highlighting the necessity of experimental investigations of Ru-based catalytic systems in liquid water.
Collapse
Affiliation(s)
- Mehdi Zare
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dia Sahsah
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mohammad Saleheen
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum 44780, Germany
| | - Andreas Heyden
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and interfaces bestow them with various exceptional properties. These properties, however, also introduce difficulties for both experimental and computational studies. The advent of machine learning interatomic potential (MLIP) addresses some of the limitations associated with empirical force fields, presenting a valuable avenue for accurate simulations of these surfaces/interfaces of nanomaterials. Central to this approach is the idea of capturing the relationship between system configuration and potential energy, leveraging the proficiency of machine learning (ML) to precisely approximate high-dimensional functions. This review offers an in-depth examination of MLIP principles and their execution and elaborates on their applications in the realm of nanomaterial surface and interface systems. The prevailing challenges faced by this potent methodology are also discussed.
Collapse
Affiliation(s)
- Kaiwei Wan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jianxin He
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
14
|
Ai C, Han S, Yang X, Vegge T, Hansen HA. Graph Neural Network-Accelerated Multitasking Genetic Algorithm for Optimizing Pd xTi 1-xH y Surfaces under Various CO 2 Reduction Reaction Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437157 DOI: 10.1021/acsami.3c18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Palladium (Pd) hydride-based catalysts have been reported to have excellent performance in the CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER). Our previous work on doped PdH and Pd alloy hydrides showed that Ti-doped and Ti-alloyed Pd hydrides could improve the performance of the CO2 reduction reaction compared with pure Pd hydride. Compositions and chemical orderings of the surfaces with only one adsorbate under certain reaction conditions are linked to their stability, activity, and selectivity toward the CO2RR and HER, as shown in our previous work. In fact, various coverages, types, and mixtures of the adsorbates, as well as state variables such as temperature, pressure, applied potential, and chemical potential, could impact their stability, activity, and selectivity. However, these factors are usually fixed at common values to reduce the complexity of the structures and the complexity of the reaction conditions in most theoretical work. To address the complexities above and the huge search space, we apply a deep learning-assisted multitasking genetic algorithm to screen for PdxTi1-xHy surfaces containing multiple adsorbates for CO2RR under different reaction conditions. The ensemble deep learning model can greatly speed up the structure relaxations and retain a high accuracy and low uncertainty of the energy and forces. The multitasking genetic algorithm simultaneously finds globally stable surface structures under each reaction condition. Finally, 23 stable structures are screened out under different reaction conditions. Among these, Pd0.56Ti0.44H1.06 + 25%CO, Pd0.31Ti0.69H1.25 + 50%CO, Pd0.31Ti0.69H1.25 + 25%CO, and Pd0.88Ti0.12H1.06 + 25%CO are found to be very active for CO2RR and suitable to generate syngas consisting of CO and H2.
Collapse
Affiliation(s)
- Changzhi Ai
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark
| | - Shuang Han
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark
| | - Xin Yang
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023; 28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.
Collapse
Affiliation(s)
- Ruben Staub
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Philippe Gantzer
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexandre Varnek
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Laboratory of Chemoinformatics, UMR 7140, CNRS, University of Strasbourg, 67081 Strasbourg, France
| |
Collapse
|