• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4774645)   Today's Articles (75)
For: Yang X, Bhowmik A, Vegge T, Hansen HA. Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au-water interfaces. Chem Sci 2023;14:3913-3922. [PMID: 37035698 PMCID: PMC10074416 DOI: 10.1039/d2sc06696c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023]  Open
Number Cited by Other Article(s)
1
Tokita AM, Devergne T, Saitta AM, Behler J. Free energy profiles for chemical reactions in solution from high-dimensional neural network potentials: The case of the Strecker synthesis. J Chem Phys 2025;162:174120. [PMID: 40326597 DOI: 10.1063/5.0268948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]  Open
2
Xia J, Zhang Y, Jiang B. The evolution of machine learning potentials for molecules, reactions and materials. Chem Soc Rev 2025. [PMID: 40227021 DOI: 10.1039/d5cs00104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
3
Jiao Z, Mao Y, Lu R, Liu Y, Guo L, Wang Z. Fine-Tuning Graph Neural Networks via Active Learning: Unlocking the Potential of Graph Neural Networks Trained on Nonaqueous Systems for Aqueous CO2 Reduction. J Chem Theory Comput 2025;21:3176-3186. [PMID: 40084714 DOI: 10.1021/acs.jctc.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
4
Yu Q, Li P, Ni X, Li Y, Wang L. Dynamics and kinetics exploration of the oxygen reduction reaction at the Fe-N4/C-water interface accelerated by a machine learning force field. Chem Sci 2025;16:3620-3629. [PMID: 39877822 PMCID: PMC11770587 DOI: 10.1039/d4sc06422d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]  Open
5
Kulichenko M, Nebgen B, Lubbers N, Smith JS, Barros K, Allen AEA, Habib A, Shinkle E, Fedik N, Li YW, Messerly RA, Tretiak S. Data Generation for Machine Learning Interatomic Potentials and Beyond. Chem Rev 2024;124:13681-13714. [PMID: 39572011 DOI: 10.1021/acs.chemrev.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
6
Célerse F, Juraskova V, Das S, Wodrich MD, Corminboeuf C. Capturing Dichotomic Solvent Behavior in Solute-Solvent Reactions with Neural Network Potentials. J Chem Theory Comput 2024;20:10350-10361. [PMID: 39570795 PMCID: PMC11635972 DOI: 10.1021/acs.jctc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
7
Ding R, Chen J, Chen Y, Liu J, Bando Y, Wang X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem Soc Rev 2024;53:11390-11461. [PMID: 39382108 DOI: 10.1039/d4cs00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
8
Cheng X, Wu C, Xu J, Han Y, Xie W, Hu P. Leveraging Machine Learning Potentials for In-Situ Searching of Active sites in Heterogeneous Catalysis. PRECISION CHEMISTRY 2024;2:570-586. [PMID: 39611023 PMCID: PMC11600352 DOI: 10.1021/prechem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/30/2024]
9
Roongcharoen T, Conter G, Sementa L, Melani G, Fortunelli A. Machine-Learning-Accelerated DFT Conformal Sampling of Catalytic Processes. J Chem Theory Comput 2024;20:9580-9591. [PMID: 39214594 DOI: 10.1021/acs.jctc.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
10
Jiao Z, Liu Y, Wang Z. Application of graph neural network in computational heterogeneous catalysis. J Chem Phys 2024;161:171001. [PMID: 39484893 DOI: 10.1063/5.0227821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]  Open
11
Xu Y, Jin Y, García Sánchez JS, Pérez-Lemus GR, Zubieta Rico PF, Delferro M, de Pablo JJ. A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning. J Phys Chem Lett 2024;15:9852-9862. [PMID: 39298736 DOI: 10.1021/acs.jpclett.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
12
Zare M, Sahsah D, Saleheen M, Behler J, Heyden A. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. J Chem Theory Comput 2024. [PMID: 39254514 DOI: 10.1021/acs.jctc.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
13
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
14
Ai C, Han S, Yang X, Vegge T, Hansen HA. Graph Neural Network-Accelerated Multitasking Genetic Algorithm for Optimizing PdxTi1-xHy Surfaces under Various CO2 Reduction Reaction Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437157 DOI: 10.1021/acsami.3c18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
15
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023;28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA