1
|
Shi Y, Tao X, Du P, Pasic P, Esser L, Chen HY, Thissen H, Wang PY. A surface-independent bioglue using photo-crosslinkable benzophenone moiety. RSC Adv 2024; 14:12966-12976. [PMID: 38655476 PMCID: PMC11036370 DOI: 10.1039/d4ra01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Surface coating technology is broadly demanded across various fields, including marine and biomedical materials; therefore, a facile and versatile approach is desired. This study proposed an attractive surface coating strategy using photo-crosslinkable benzophenone (BP) moiety for biomaterials application. BP-containing "bioglue" polymer can effectively crosslink with all kinds of surfaces and biomolecules. Upon exposure to ultraviolet (UV) light, free radical reaction from the BP glue facilitates the immobilization of diverse molecules onto different substrates in a straightforward and user-friendly manner. Through either one-step, mixing the bioglue with targeted biomolecules, or two-step methods, pre-coating the bioglue and then adding targeted biomolecules, polyacrylic acid (PAA), cyclic RGD-containing peptides, and proteins (gelatin, collagen, and fibronectin) were successfully immobilized on substrates. After drying the bioglue, targeted biomolecules can still be immobilized on the surfaces preserving their bioactivity. Cell culture on biomolecule-immobilized surfaces using NIH 3T3 fibroblasts and human bone marrow stem cells (hBMSCs) showed significant improvement of cell adhesion and activity compared to the unmodified control in serum-free media after 24 hours. Furthermore, hBMSCs on the fibronectin-immobilized surface showed an increased calcium deposition after 21 days of osteogenic differentiation, suggesting that the immobilized fibronectin is highly bioactive. Given the straightforward protocol and substrate-independent bioglue, the proposed coating strategy is promising in broad-range fields.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Paul Pasic
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Lars Esser
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan
| | - Helmut Thissen
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| |
Collapse
|
2
|
Kim YC, Composto RJ, Winey KI. pH-Mediated Size-Selective Adsorption of Gold Nanoparticles on Diblock Copolymer Brushes. ACS NANO 2023; 17:9224-9234. [PMID: 37134256 DOI: 10.1021/acsnano.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Precise control of nanoparticles at interfaces can be achieved by designing stimuli-responsive surfaces that have tunable interactions with nanoparticles. In this study, we demonstrate that a polymer brush can selectively adsorb nanoparticles according to size by tuning the pH of the buffer solution. Specifically, we developed a facile polymer brush preparation method using a symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer deposited on a grafted polystyrene layer. This method is based on the assembly of a PS-b-P2VP thin film oriented with parallel lamellae that remains after exfoliation of the top PS-b-P2VP layer. We characterized the P2VP brush using X-ray reflectivity and atomic force microscopy. The buffer pH is used to tailor interactions between citrate-coated gold nanoparticles (AuNPs) and the top P2VP block that behaves like a polymer brush. At low pH (∼4.0) the P2VP brushes are strongly stretched and display a high density of attractive sites, whereas at neutral pH (∼6.5) the P2VP brushes are only slightly stretched and have fewer attractive sites. A quartz crystal microbalance with dissipation monitored the adsorption thermodynamics as a function of AuNP diameter (11 and 21 nm) and pH of the buffer. Neutral pH provides limited penetration depth for nanoparticles and promotes size selectivity for 11 nm AuNP adsorption. As a proof of concept, the P2VP brushes were exposed to various mixtures of large and small AuNPs to demonstrate selective capture of the smaller AuNPs. This study shows the potential of creating devices for nanoparticle size separations using pH-sensitive polymer brushes.
Collapse
Affiliation(s)
- Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Khakzad F, Dewangan NK, Li TH, Safi Samghabadi F, Herrera Monegro R, Robertson ML, Conrad JC. Fouling Resistance and Release Properties of Poly(sulfobetaine) Brushes with Varying Alkyl Chain Spacer Lengths and Molecular Weights. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2009-2019. [PMID: 36533943 DOI: 10.1021/acsami.2c16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We examined the effects of alkyl carbon spacer length (CSL) and molecular weight on fouling resistance and release properties of zwitterionic poly(sulfobetaine methacrylate) brushes. Using surface-initiated atom transfer radical polymerization, we synthesized two series of brushes with CSL = 3 and 4 and molecular weight from 19 to 1500 kg ·mol-1, corresponding to dry brush thickness from around 6 to 180 nm. The brush with CSL = 3 was nearly completely wet with water (independent of molecular weight), whereas the brush with CSL = 4 exhibited a strong increase in water contact angle with molecular weight. Though the two-brush series had distinct wetting properties, both series of brushes exhibited similarly great resistance against fouling by Staphylococcus epidermidis bacteria and Aspergillus niger fungi spores when submerged in water, indicating that neither molecular weight nor CSL strongly affected the antifouling behavior. We also compared the efficacy of brushes against fouling by fungi and silicon oil in air. Brushes grafted to filter paper were strongly fouled by fungi and silicon oil in air. Grafting the polymers to the filter paper, however, greatly enhanced removal of the foulant upon rinsing. The removal of fungi and silicon oil when rinsed with a salt solution was enhanced by 219 and 175%, respectively, as compared to a blank filter paper control. Thus, our results indicate that these zwitterionic brushes can promote foulant removal for dry applications in addition to their well-known fouling resistance in submerged conditions.
Collapse
Affiliation(s)
- Fahimeh Khakzad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Tzu-Han Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Farshad Safi Samghabadi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ronard Herrera Monegro
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
5
|
Sójka O, van der Mei HC, van Rijn P, Gagliano MC. Zwitterionic poly(sulfobetaine methacrylate)-based hydrogel coating for drinking water distribution systems to inhibit adhesion of waterborne bacteria. Front Bioeng Biotechnol 2023; 11:1066126. [PMID: 36896012 PMCID: PMC9989184 DOI: 10.3389/fbioe.2023.1066126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N'-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
Collapse
Affiliation(s)
- Olga Sójka
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|