Lu X, Yadav D, He B, Zhou Y, Zhou L, Zeng Z, Ma L, Jing D. Unveiling micro- and nanoscale bubble dynamics for enhanced electrochemical water splitting.
Adv Colloid Interface Sci 2025;
343:103544. [PMID:
40382849 DOI:
10.1016/j.cis.2025.103544]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/31/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Bubbles generated during electrochemical and photoelectrochemical water splitting critically influence efficiency through complex factors, including chemical reactions, species transport, mass transfer at the three-phase interface, and bubble coverage. A detailed understanding of the nucleation, growth, coalescence, and detachment of micro- and nanoscale bubbles is vital for advancing water splitting technologies. Surface-attached bubbles significantly reduce the electrocatalytically active area of electrodes, leading to increased surface overpotential at a given current density. Consequently, their effective removal is pivotal for optimizing the electrolysis process. However, the intricate interplay among single bubble evolution, mass transport, bubble coverage, and overpotential remain inadequately understood. This review explores the fundamental mechanisms underpinning bubble evolution, with an emphasis on the Marangoni effect and its influence on bubble dynamics. Furthermore, recent advancements in understanding individual bubbles on micro and nano-electrodes are highlighted, offering valuable insights into scale-dependent bubble behavior. These findings enrich our knowledge of gas-liquid interfacial phenomena and underscore their industrial significance, presenting opportunities to enhance water splitting performance through optimized bubble dynamics.
Collapse