1
|
Wang R, Wang X, Wang Y, Wei G. The Biomodification and Biomimetic Synthesis of 2D Nanomaterial-Based Nanohybrids for Biosensor Applications: A Review. BIOSENSORS 2025; 15:328. [PMID: 40422067 DOI: 10.3390/bios15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids with enhanced catalytic, fluorescent, electronic, and optical properties, thereby expanding their utility in constructing high-performance biosensors. In this review, we present recent advances in the synthesis of 2DNM-based nanohybrids via both biomodification and biomimetic strategies for biosensor applications. We discuss covalent and non-covalent biomodification methods involving various biomolecules, including peptides, proteins, DNA/RNA, enzymes, biopolymers, and bioactive polysaccharides. The engineering of biomolecule-nanomaterial interfaces for the creation of biomodified 2DNM-based nanohybrids is also explored. Furthermore, we summarize the biomimetic synthesis of 2DNM-based bio-nanohybrids through pathways such as bio-templating, biomolecule-directed self-assembly, biomineralization, and biomimetic functional integration. The potential applications of these nanohybrids in diverse biosensing platforms-including colorimetric, surface plasmon resonance, electrochemical, fluorescence, photoelectrochemical, and integrated multimodal biosensors-are introduced and discussed. Finally, we analyze the opportunities and challenges associated with this rapidly developing field. We believe this comprehensive review will provide valuable insights into the biofunctionalization of 2DNMs and guide the rational design of advanced biosensors for diagnostic applications.
Collapse
Affiliation(s)
- Ranran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, China
| | - Xinyue Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, China
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Slepičková Kasálková N, Rimpelová S, Vacek C, Frýdlová B, Labíková I, Plutnar J, Severa K, Švorčík V, Slepička P. BioHastalex modified with silver nanolayers and heat treatment for antibacterial properties. Heliyon 2025; 11:e41467. [PMID: 39834419 PMCID: PMC11742824 DOI: 10.1016/j.heliyon.2024.e41467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated. Significant surface roughness and morphology changes were detected at the nanometer scale after heat treatment of Ag-sputtered BioHastalex. The deposition of a thin silver nanolayer had an outstanding effect on BioHastalex's antibacterial properties while still maintaining cell viability (MRC-5, HaCaT). The heat treatment of BioHastalex-Ag led to the formation of regular nanocluster arrays while affecting the Ag concentration on the very surface. The decrease in silver concentration was connected with the length of heat treatment; cells growing on such samples exhibited good viability, and the antibacterial properties were weaker than simply sputtered BioHastalex.
Collapse
Affiliation(s)
- Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Cyril Vacek
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Bára Frýdlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Iva Labíková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Jan Plutnar
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Kamil Severa
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| |
Collapse
|
4
|
Dar MS, Rosaiah P, Bhagyalakshmi J, Ahirwar S, Khan A, Tamizhselvi R, Reddy VRM, Palaniappan A, Sahu NK. Graphene quantum dots as nanotherapeutic agents for triple-negative breast cancer: Insights from 3D tumor models. Coord Chem Rev 2025; 523:216247. [DOI: 10.1016/j.ccr.2024.216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Kashapov R, Zakharova L. Introduction to Special Issue "The Self-Assembly and Design of Polyfunctional Nanosystems 3.0". Int J Mol Sci 2024; 25:10966. [PMID: 39456750 PMCID: PMC11507590 DOI: 10.3390/ijms252010966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Stimulus-responsive systems allowing for the controlled release of drugs [...].
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Lucia Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| |
Collapse
|
6
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
7
|
Zhang L, Zhang Z, Xing C, Yu A, Yu J, Chen P. Aromatic Amino Acid-Dependent Surface Assembly of Amphiphilic Peptides for One-Step Graphite Exfoliation and Graphene Functionalization. J Phys Chem Lett 2024; 15:6611-6620. [PMID: 38888261 DOI: 10.1021/acs.jpclett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amphiphilic peptides show great potential for exfoliating graphite and functionalizing graphene. However, the variety of amino acids complicates our understanding of the underlying mechanisms. In this study, we designed four peptides (C6W1, C6W2, C6W4, and C6W6) with different amounts of aromatic tryptophan amino acids and two additional peptides (C6F4 and C6Y4) by substituting tryptophan with aromatic phenylalanine or tyrosine. This allowed us to investigate the processes and mechanisms of graphite exfoliation and graphene functionalization. Using experimental and computational methods, we discovered that peptides containing tryptophan demonstrated higher exfoliation efficiency and increased tryptophan content further improved this efficiency, resulting in more peptide-functionalized graphene layers. Significantly, the primary driving force for the surface-assisted assembly of peptides on graphite is the π-π stacking interaction between the aromatic ring contributed by aromatic amino acids and the hexagonal rings of the graphite surface. This interaction leads to a layer-by-layer exfoliation mechanism. Our research offers valuable insights into peptide design strategies for one-step graphite exfoliation and graphene functionalization in aqueous environments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Zhining Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Jingmou Yu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
8
|
Zhao Y, Wang X, Pan S, Hong F, Lu P, Hu X, Jiang F, Wu L, Chen Y. Bimetallic nanozyme-bioenzyme hybrid material-mediated ultrasensitive and automatic immunoassay for the detection of aflatoxin B 1 in food. Biosens Bioelectron 2024; 248:115992. [PMID: 38184942 DOI: 10.1016/j.bios.2023.115992] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most prevalent and dangerous biotoxin in crops and feedstuff, which poses a great threat to human health and also cause significant financial losses. Therefore, there is an urgent need to develop an effective method for AFB1 detection. In this work, we developed an automatic reaction equipment and nanozyme-enhanced immunosorbent assay (Auto-NEISA) for sensitive and accurate detection of AFB1 by combining the highly effective signal probes with a self-designed automated immunoreactive equipment. Wherein, polystyrene (PS) nanoparticles were used as signal carriers for loading a massive in situ-synthesized platinum and palladium bimetallic nanozyme, which could enrich horseradish peroxidase-labeled goat anti-mouse antibody (HRP-Ab2) on the nanozyme surface to form a bimetallic nanozyme-bioenzyme hybrid material for multiple signal amplification. The entire reaction could be automatically completed by the self-developed immunoreactive equipment. The Auto-NEISA method realized the sensitive detection of AFB1 with a wide linear detection range of 10-104 pg/mL, at a low limit of detection (LOD) of 5.52 pg/mL. The LOD was 65-fold lower than that of the enzyme-linked immunosorbent assay (ELISA). Additionally, Auto-NEISA was successfully applied to detect AFB1 in real food samples, demonstrating that it has considerable potential for detecting food contaminants with high accuracy and efficiency.
Collapse
Affiliation(s)
- Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shixing Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Peng Lu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaobo Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, PR China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, PR China
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, Liaoning, PR China; Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, PR China.
| |
Collapse
|
9
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
10
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|